scholarly journals Partial Order Rank Features in Colour Space

2020 ◽  
Vol 10 (2) ◽  
pp. 499 ◽  
Author(s):  
Fabrizio Smeraldi ◽  
Francesco Bianconi ◽  
Antonio Fernández ◽  
Elena González

Partial orders are the natural mathematical structure for comparing multivariate data that, like colours, lack a natural order. We introduce a novel, general approach to defining rank features in colour spaces based on partial orders, and show that it is possible to generalise existing rank based descriptors by replacing the order relation over intensity values by suitable partial orders in colour space. In particular, we extend a classical descriptor (the Texture Spectrum) to work with partial orders. The effectiveness of the generalised descriptor is demonstrated through a set of image classification experiments on 10 datasets of colour texture images. The results show that the partial-order version in colour space outperforms the grey-scale classic descriptor while maintaining the same number of features.

2010 ◽  
Vol 81 (2) ◽  
pp. 195-207 ◽  
Author(s):  
BOORAPA SINGHA ◽  
JINTANA SANWONG ◽  
R. P. SULLIVAN

AbstractMarques-Smith and Sullivan [‘Partial orders on transformation semigroups’, Monatsh. Math.140 (2003), 103–118] studied various properties of two partial orders on P(X), the semigroup (under composition) consisting of all partial transformations of an arbitrary set X. One partial order was the ‘containment order’: namely, if α,β∈P(X) then α⊆β means xα=xβ for all x∈dom α, the domain of α. The other order was the so-called ‘natural order’ defined by Mitsch [‘A natural partial order for semigroups’, Proc. Amer. Math. Soc.97(3) (1986), 384–388] for any semigroup. In this paper, we consider these and other orders defined on the symmetric inverse semigroup I(X) and the partial Baer–Levi semigroup PS(q). We show that there are surprising differences between the orders on these semigroups, concerned with their compatibility with respect to composition and the existence of maximal and minimal elements.


2014 ◽  
Vol 91 (1) ◽  
pp. 104-115 ◽  
Author(s):  
SUREEPORN CHAOPRAKNOI ◽  
TEERAPHONG PHONGPATTANACHAROEN ◽  
PONGSAN PRAKITSRI

AbstractHiggins [‘The Mitsch order on a semigroup’, Semigroup Forum 49 (1994), 261–266] showed that the natural partial orders on a semigroup and its regular subsemigroups coincide. This is why we are interested in the study of the natural partial order on nonregular semigroups. Of particular interest are the nonregular semigroups of linear transformations with lower bounds on the nullity or the co-rank. In this paper, we determine when they exist, characterise the natural partial order on these nonregular semigroups and consider questions of compatibility, minimality and maximality. In addition, we provide many examples associated with our results.


1973 ◽  
Vol 15 (4) ◽  
pp. 441-460 ◽  
Author(s):  
J. W. Hogan

Let S be a bisimple semigroup, let Es denote the set of idempotents of S, and let ≦ denote the natural partial order relation on Es. Let ≤ * denote the inverse of ≦. The idempotents of S are said to be well-ordered if (Es, ≦ *) is a well-ordered set.


1978 ◽  
Vol 19 (1) ◽  
pp. 59-65 ◽  
Author(s):  
H. Mitsch

The natural order of an inverse semigroup defined by a ≤ b ⇔ a′b = a′a has turned out to be of great importance in describing the structure of it. In this paper an order-theoretical point of view is adopted to characterise inverse semigroups. A complete description is given according to the type of partial order an arbitrary inverse semigroup S can possibly admit: a least element of (S, ≤) is shown to be the zero of (S, ·); the existence of a greatest element is equivalent to the fact, that (S, ·) is a semilattice; (S, ≤) is directed downwards, if and only if S admits only the trivial group-homomorphic image; (S, ≤) is totally ordered, if and only if for all a, b ∈ S, either ab = ba = a or ab = ba = b; a finite inverse semigroup is a lattice, if and only if it admits a greatest element. Finally formulas concerning the inverse of a supremum or an infimum, if it exists, are derived, and right-distributivity and left-distributivity of multiplication with respect to union and intersection are shown to be equivalent.


2019 ◽  
Vol 19 (01) ◽  
pp. 2050011 ◽  
Author(s):  
B. Ungor ◽  
S. Halicioglu ◽  
A. Harmanci ◽  
J. Marovt

Let [Formula: see text] be a ring. Motivated by a generalization of a well-known minus partial order to Rickart rings, we introduce a new relation on the power set [Formula: see text] of [Formula: see text] and show that this relation, which we call “the minus order on [Formula: see text]”, is a partial order when [Formula: see text] is a Baer ring. We similarly introduce and study properties of the star, the left-star, and the right-star partial orders on the power sets of Baer ∗-rings. We show that some ideals generated by projections of a von Neumann regular and Baer ∗-ring [Formula: see text] form a lattice with respect to the star partial order on [Formula: see text]. As a particular case, we present characterizations of these orders on the power set of [Formula: see text], the algebra of all bounded linear operators on a Hilbert space [Formula: see text].


Author(s):  
Muhammad Rashad ◽  
Imtiaz Ahmad ◽  
Faruk Karaaslan

A magma S that meets the identity, xy·z = zy·x, ∀x, y, z ∈ S is called an AG-groupoid. An AG-groupoid S gratifying the paramedial law: uv · wx = xv · wu, ∀ u, v, w, x ∈ S is called a paramedial AGgroupoid. Every AG-grouoid with a left identity is paramedial. We extend the concept of inverse AG-groupoid [4, 7] to paramedial AG-groupoid and investigate various of its properties. We prove that inverses of elements in an inverse paramedial AG-groupoid are unique. Further, we initiate and investigate the notions of congruences, partial order and compatible partial orders for inverse paramedial AG-groupoid and strengthen this idea further to a completely inverse paramedial AG-groupoid. Furthermore, we introduce and characterize some congruences on completely inverse paramedial AG-groupoids and introduce and characterize the concept of separative and completely separative ordered, normal sub-groupoid, pseudo normal congruence pair, and normal congruence pair for the class of completely inverse paramedial AG-groupoids. We also provide a variety of examples and counterexamples for justification of the produced results.


2015 ◽  
Vol 31 (3) ◽  
pp. 389-394
Author(s):  
WARUT SAKSIRIKUN ◽  
◽  
NARIN PETROT ◽  

The main aim of this paper is to consider some fixed point theorems via a partial order relation in complete metric spaces, when the considered mapping may not satisfy the monotonic properties. Furthermore, we also obtain some couple fixed point theorems, which can be viewed as an extension of a result that was presented in [V. Berinde, Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal., 74 (2011), 7347–7355].


Sign in / Sign up

Export Citation Format

Share Document