scholarly journals Reconstructing the Dynamic Processes of the Taimali Landslide in Taiwan Using the Waveform Inversion Method

2020 ◽  
Vol 10 (17) ◽  
pp. 5872
Author(s):  
Guan-Wei Lin ◽  
Ching Hung

As a landslide occurs, seismic signals generated by the mass sliding on the slope can be recorded by seismometers nearby. Using waveform inversion techniques, we can explore the dynamic processes (e.g., sliding direction, velocity, and runout distance) of a landslide with the inverted force–time function. In this study, the point force history (PFH) inversion method was applied to the Taimali landslide in Taiwan, which was triggered by a heavy rainstorm in 2009. The inverted force–time function for the landslide revealed the complicated dynamic processes. The time series of velocity indicated three different sliding directions during the landslide. Hence, three propagating stages of the Taimali landslide were determined and were consistent with an investigation using remote sensing images and a digital elevation model of the landslide. In addition, the PFH inversion was implemented using high-quality single-station records and maintained good performance compared with the inversion by multistation records.

2020 ◽  
Author(s):  
Bettina Knoflach ◽  
Hannah Tussetschläger ◽  
Rudolf Sailer ◽  
Gertraud Meißl ◽  
Johann Stötter

<p>Climate change has serious implications for the cryosphere and a close relationship between the instability of rock faces and the changes in high mountain permafrost is suspected. Although, the number of rockfall events in Alpine areas is increasing, detailed analyses of the frequency and runout distances in high altitudes are rare. This study gives an insight into the rockfall activity in the Ötztal Alps in Tyrol, Austria. A systematic observation utilizing bi-temporal ALS-DTMs in combination with orthoimages revealed a total of 93 rockfalls over an area of 637 km² in the period from 2006 to 2010. Since more than 90 % of the rockfall release areas were mapped in potential permafrost areas, a correlation between rockfall activity and climatically driven degradation of permafrost in bedrock is very likely. 18 rockfall events, ranging in volume from 69 to 8420 m³, were suitable for runout assessments. To estimate the maximum range of future rockfalls with empirical models, values of 30 ° (Fahrböschung) and 26 ° (minimum shadow angle) can be proposed for risk assessment at a regional scale (1:25,000 – 1:100,000). Rockfalls occurring on snow or ice may also go below these values.</p><p><strong>Keywords</strong>: Rockfall, Permafrost, digital elevation model; runout distance, Fahrböschung, minimum shadow angle, Ötztal Alps</p>


2021 ◽  
Vol 11 (3) ◽  
pp. 1192
Author(s):  
Guan-Wei Lin ◽  
Ching Hung

The authors and journal retract the article, “Reconstructing the Dynamic Processes of the Taimali Landslide in Taiwan Using the Waveform Inversion Method” [...]


2018 ◽  
Vol 12 (5-6) ◽  
pp. 50-57 ◽  
Author(s):  
I. S. Voskresensky ◽  
A. A. Suchilin ◽  
L. A. Ushakova ◽  
V. M. Shaforostov ◽  
A. L. Entin ◽  
...  

To use unmanned aerial vehicles (UAVs) for obtaining digital elevation models (DEM) and digital terrain models (DTM) is currently actively practiced in scientific and practical purposes. This technology has many advantages: efficiency, ease of use, and the possibility of application on relatively small area. This allows us to perform qualitative and quantitative studies of the progress of dangerous relief-forming processes and to assess their consequences quickly. In this paper, we describe the process of obtaining a digital elevation model (DEM) of the relief of the slope located on the bank of the Protva River (Satino training site of the Faculty of Geography, Lomonosov Moscow State University). To obtain the digital elevation model, we created a temporary geodetic network. The coordinates of the points were measured by the satellite positioning method using a highprecision mobile complex. The aerial survey was carried out using an unmanned aerial vehicle from a low altitude (about 40–45 m). The processing of survey materials was performed via automatic photogrammetry (Structure-from-Motion method), and the digital elevation model of the landslide surface on the Protva River valley section was created. Remote sensing was supplemented by studying archival materials of aerial photography, as well as field survey conducted immediately after the landslide. The total amount of research results made it possible to establish the causes and character of the landslide process on the study site. According to the geomorphological conditions of formation, the landslide refers to a variety of landslideslides, which are formed when water is saturated with loose deposits. The landslide body was formed with the "collapse" of the blocks of turf and deluvial loams and their "destruction" as they shifted and accumulated at the foot of the slope.


2017 ◽  
Author(s):  
Indra Riyanto ◽  
Lestari Margatama

The recent degradation of environment quality becomes the prime cause of the recent occurrence of natural disasters. It also contributes in the increase of the area that is prone to natural disasters. Flood history data in Jakarta shows that flood occurred mainly during rainy season around January – February each year, but the flood area varies each year. This research is intended to map the flood potential area in DKI Jakarta by segmenting the Digital Elevation Model data. The data used in this research is contour data obtained from DPP–DKI with the resolution of 1 m. The data processing involved in this research is extracting the surface elevation data from the DEM, overlaying the river map of Jakarta with the elevation data. Subsequently, the data is then segmented using watershed segmentation method. The concept of watersheds is based on visualizing an image in three dimensions: two spatial coordinates versus gray levels, in which there are two specific points; that are points belonging to a regional minimum and points at which a drop of water, if placed at the location of any of those points, would fall with certainty to a single minimum. For a particular regional minimum, the set of points satisfying the latter condition is called the catchments basin or watershed of that minimum, while the points satisfying condition form more than one minima are termed divide lines or watershed lines. The objective of this segmentation is to find the watershed lines of the DEM image. The expected result of the research is the flood potential area information, especially along the Ciliwung river in DKI Jakarta.


Sign in / Sign up

Export Citation Format

Share Document