force time
Recently Published Documents


TOTAL DOCUMENTS

524
(FIVE YEARS 140)

H-INDEX

34
(FIVE YEARS 4)

Children ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 107
Author(s):  
Zalana Ștefan Alexandru ◽  
Maria Dămășaru ◽  
Edgar Moraru ◽  
Ciprian Ion Rizescu ◽  
Simina Neagoe (Chelărescu) ◽  
...  

Background. The arches used in orthodontic therapy are subject to increasing physical and chemical stresses. Purpose of the study: This in vitro experimental study aims to highlight and compare the main mechanical properties of orthodontic arches. Materials and Methods: We used 40 springs, 2 materials, 20 of Ni-Cr and 20 of Co-Cr, of different diameters, 0.7 mm 0.8 mm and 1.2 mm, subjected to the environment of artificial saliva and artificial saliva with cola for one month and two months, respectively. Five springs of each material were tested at different times: T0, before application in the oral cavity, then at time T1, T2, T3, T4. Three lengths of the lever arm were considered for bending forces acting on the springs (dental wires). These lengths were 15, 10 and 5 mm. The wires were tested under the action of bending forces on a Hans Schmidt HV 500N stand, obtaining the characteristics of the wires: deformation-force-time. Results: Graphical determinations show that the degree of deformation of the wires is influenced by the applied force, diameter and obviously by the immersion time, respectively by the type of solution in which the springs were immersed. Conclusions: The final degree of bending is higher for Co-Cr arcs than for Ni-Cr at all three dimensions.


2021 ◽  
Author(s):  
Micheal Jacobson ◽  
Prakyath Kantharaju ◽  
Hyeongkeun Jeong ◽  
Xingyuan Zhou ◽  
Jae-Kwan Ryu ◽  
...  

Abstract Background: Individuals with below-knee amputation (BKA) experience increased physical effort when walking, and the use of a robotic ankle-foot prosthesis (AFP) can reduce such effort. Our prior study on a robotic AFP showed that walking effort could be reduced if the robot is personalized to the wearer. The personalization is accomplished using human-in-the-loop (HIL) optimization, in which the cost function is based on a real-time physiological signal indicating physical effort. The conventional physiological measurement, however, requires a long estimation time, hampering real-time optimization due to the limited experimental time budget. In addition, the physiological sensor, based on respiration uses a mask with rigid elements that may be difficult for the wearer to use. Prior studies suggest that a symmetry measure using a less intrusive sensor, namely foot pressure, could serve as a metric of gait performance. This study hypothesized that a function of foot pressure, the symmetric foot force-time integral, could be used as a cost function to rapidly estimate the physical effort of walking; therefore, it can be used to personalize assistance provided by a robotic ankle in a HIL optimization scheme. Methods: We developed a new cost function derived from a well-known clinical measure, the symmetry index, by hypothesizing that foot force-time integral (FFTI) symmetry would be highly correlated with metabolic cost. We conducted experiments on human participants (N = 8) with simulated amputation to test the new cost function. The study consisted of a discrete trial day, an HIL optimization training day, and an HIL optimization data collection day. We used the discrete trial day to evaluate the correlation between metabolic cost and a cost function using symmetric FFTI percentage. During walking, we varied the prosthetic ankle stiffness while measuring foot pressure and metabolic rate. On the second and third days, HIL optimization was used to find the optimal stiffness parameter with the new cost function using symmetric FFTI percentage. Once the optimal stiffness parameter was found, we validated the performance with comparison to a weight-based stiffness and control-off conditions. We measured symmetric FFTI percentage during the stance phase, prosthesis push-off work, metabolic cost, and user comfort in each condition. We expected the optimized prosthetic ankle stiffness based on the newly developed cost function could reduce the energy expenditure during walking for the individuals with simulated amputation. Results: We found that the cost function using symmetric foot force-time integral percentage presents a reasonable correlation with measured metabolic cost (Pearson’s R > 0.62). When we employed the new cost function in HIL ankle-foot prosthesis parameter optimization, 8 individuals with simulated amputation reduced their cost of walking by 15.9% (p = 0.01) and 16.1% (p = 0.02) compared to the weight-based and control-off conditions, respectively. The symmetric FFTI percentage for the optimal condition tended to be closer to the ideal symmetry value (50%) compared to weight-based (p = 0.23) and control-off conditions (p = 0.04). Conclusion: This study suggests that foot force-time integral symmetry using foot pressure sensors can be used as a cost function when optimizing a wearable robot parameter.


Author(s):  
Melda Alkan Çakıroğlu ◽  
◽  
Ahmet Ali Süzen ◽  

It has been built for centuries as housing and animal shelters, especially in rural areas, due to the advantages of masonry buildings being economical, being built with local materials, and not requiring skilled labor. The walls, which are the bearing elements of masonry structures, are formed by placing stones, bricks, or blocks on top of each other with a binding mortar. In this study, a model with the XGBoost algorithm, which is a tree-based classification algorithm, is proposed to scale cost of the samples reinforced with welded wire reinforcement/polypropylene fiber added dry mix shotcrete. The model executes cost classification based on concrete, steel mesh, steel, epoxy, fiber and workmanship independent parameters. A softmax function was incorporated into the model for classification. A complexity matrix was produced to evaluate classification performance of model. Also, it was compared to other machine learning algorithms. The model yielded higher accuracy and lower false-positive rates. As a result, the proposed model can make better estimates in cost classification compared to other machine learning methods. In conclusion, using the classification ability of the model, it is aimed to measure the cost effect in the construction process that calls for high labor force, time and cost.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Justin J. Merrigan ◽  
Lauren E. Rentz ◽  
William Guy Hornsby ◽  
John P. Wagle ◽  
Jason D. Stone ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12481
Author(s):  
Yuqi He ◽  
Dong Sun ◽  
Xiaoyi Yang ◽  
Gusztáv Fekete ◽  
Julien S. Baker ◽  
...  

Background Biomechanical footwork research during table tennis performance has been the subject of much interest players and exercise scientists. The purpose of this study was to investigate the lower limb kinetic characteristics of the chasse step and one step footwork during stroke play using traditional discrete analysis and one-dimensional statistical parameter mapping. Methods Twelve national level 1 table tennis players (Height: 172 ± 3.80 cm, Weight: 69 ± 6.22 kg, Age: 22 ± 1.66 years, Experience: 11 ± 1.71 year) from Ningbo University volunteered to participate in the study. The kinetic data of the dominant leg during the chasse step and one step backward phase (BP) and forward phase (FP) was recorded by instrumented insole systems and a force platform. Paired sample T tests were used to analyze maximum plantar force, peak pressure of each plantar region, the force time integral and the pressure time integral. For SPM analysis, the plantar force time series curves were marked as a 100% process. A paired-samples T-test in MATLAB was used to analyze differences in plantar force. Results One step produced a greater plantar force than the chasse step during 6.92–11.22% BP (P = 0.039). The chasse step produced a greater plantar force than one step during 53.47–99.01% BP (P < 0.001). During the FP, the chasse step showed a greater plantar force than the one step in 21.06–84.06% (P < 0.001). The one step produced a higher maximum plantar force in the BP (P = 0.032) and a lower maximum plantar force in the FP (P = 0) compared with the chasse step. The one step produced greater peak pressure in the medial rearfoot (P = 0) , lateral rearfoot (P = 0) and lateral forefoot (P = 0.042) regions than the chasse step during BP. In FP, the chasse step showed a greater peak pressure in the Toe (P = 0) than the one step. The one step had a lower force time integral (P = 0) and greater pressure time integral (P = 0) than the chasse step in BP, and the chasse step produced a greater force time integral (P = 0) and pressure time integral (P = 0.001) than the one step in the FP. Conclusion The findings indicate that athletes can enhance plantarflexion function resulting in greater weight transfer, facilitating a greater momentum during the 21.06–84.06% of FP. This is in addition to reducing the load on the dominant leg during landing by utilizing a buffering strategy. Further to this, consideration is needed to enhance the cushioning capacity of the sole heel and the stiffness of the toe area.


2021 ◽  
Vol 2 ◽  
Author(s):  
Marie-Andrée Mercier ◽  
Philippe Rousseau ◽  
Martha Funabashi ◽  
Martin Descarreaux ◽  
Isabelle Pagé

Background: Spinal manipulations (SMT) and mobilizations (MOB) are interventions commonly performed by many health care providers to manage musculoskeletal conditions. The clinical effects of these interventions are believed to be, at least in part, associated with their force-time characteristics. Numerous devices have been developed to measure the force-time characteristics of these modalities. The use of a device may be facilitated or limited by different factors such as its metrologic properties.Objectives: This mixed-method scoping review aimed to characterize the metrologic properties of devices used to measure SMT/MOB force-time characteristics and to determine which factors may facilitate or limit the use of such devices within the context of research, education and clinical practice.Methods: This study followed the Joanna Briggs Institute's framework. The literature search strategy included four concepts: (1) devices, (2) measurement of SMT or MOB force-time characteristics on humans, (3) factors facilitating or limiting the use of devices, and (4) metrologic properties. Two reviewers independently reviewed titles, abstracts and full articles to determine inclusion. To be included, studies had to report on a device metrologic property (e.g., reliability, accuracy) and/or discuss factors that may facilitate or limit the use of the device within the context of research, education or clinical practice. Metrologic properties were extracted per device. Limiting and facilitating factors were extracted and themes were identified.Results: From the 8,998 studies initially retrieved, 46 studies were finally included. Ten devices measuring SMT/MOB force-time characteristics at the clinician-patient interface and six measuring them at patient-table interfaces were identified. Between zero and eight metrologic properties were reported per device: measurement error (defined as validity, accuracy, fidelity, or calibration), reliability/repeatability, coupling/crosstalk effect, linearity/correlation, sensitivity, variability, drift, and calibration. From the results, five themes related to the facilitating and limiting factors were developed: user-friendliness and versatility, metrologic/intrinsic properties, cost and durability, technique application, and feedback.Conclusion: Various devices are available to measure SMT/MOB force-time characteristics. Metrologic properties were reported for most devices, but terminology standardization is lacking. The usefulness of a device in a particular context should be determined considering the metrologic properties as well as other potential facilitating and limiting factors.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Justin J. Merrigan ◽  
Jason D. Stone ◽  
John P. Wagle ◽  
W. G. Hornsby ◽  
Jad Ramadan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document