scholarly journals Solar and Heat Pump Systems for Domestic Hot Water Production on a Small Island: The Case Study of Lampedusa

2020 ◽  
Vol 10 (17) ◽  
pp. 5968
Author(s):  
Marco Beccali ◽  
Marina Bonomolo ◽  
Biagio Di Pietra ◽  
Giuliana Leone ◽  
Francesca Martorana

The achievement of United Nations Sustainable Development Goals, related to energy and resource use, is a critical issue for small and insulated communities. In many minor islands, solar energy is not correctly exploited, and electrical heaters are connected to weak grids with very a high share of generation by fossil fuels. As a consequence, there is the necessity to assess the potential and the suitability of diffusion of alternative systems to avoid dependency on the electrical grid and reduce carbon emissions. This paper aims to evaluate the technical and economic performances of some alternative systems exploiting renewable energy for domestic hot water production. Four different systems were simulated and studied: a heat pump connected to the grid, a heat pump coupled with a photovoltaic plant, a heat pump combined with a solar thermal collector, and a solar thermal plant. Moreover, heat and electricity storages were studied for reducing impacts on the distribution network. The work presents data gathered for a study on energy-retrofit strategies on Lampedusa Island (Italy, 35°30′56″ north (N), 568 degree-days). Finally, to select the most cost-effective plant, an economic analysis of the chosen systems was carried out. This analysis shows that the best net present values are associated with the heat pump (HP) coupled with a stand-alone PV system and a small battery and solar thermal-assisted HP. The shortest payback time was calculated for the solar thermal system.

2021 ◽  
Author(s):  
Toktam Saeid

In October 2009, Team North competed in the US DOE 2009 Solar Decathlon competition. Team North's mission was to design and deliver North House, an energy efficient solar-powered home while training Canada's next generation of leaders in sustainable design. In North House, the PV system on the roof was the primary energy generation, complimented by a custom PV cladding system on the south, east and west facades. A solar assisted heat pump system, including a three-tank heat transfer and storage system, the horizontally mounted evacuated-tube solar thermal collectors on the roof and a variable capacity heat pump met the hot water and space heating demands. A second variable capacity heat pump was utilized for space cooling. The solar thermal system was studied using TRNSYS simulation. For the initial assessments the simulations were run for Baltimore. Then, the analyses were extended to different cities across Canada. In all scenarios the same house was linked to the system. The minimum annual solar fraction of the different cities was 64% and it rose up to 81%. Finally, the data measured during the competition were analyzed and compared with the data resulting from the simulation. According to competition measures, during the 10 days of competition in Washington DC, the PV system generated 271.6kWh of electricity and the solar thermal system produced 91.7kWh while the house consumption was 294.1kWh. As a result, North House was evidently a net-positive house.


Author(s):  
Radu Radoi ◽  
Ioan Pavel ◽  
Corneliu Cristescu ◽  
Liliana Dumitrescu

Fossil fuels are an exhaustible resource on Earth, and their use pollutes the environment massively. The population of the planet has grown a lot, and for the production of domestic hot water, to ensure a decent standard of living, it is necessary to consume increasing quantities of fossil fuels. The very high level of greenhouse gases released into the atmosphere leads to an increase in average of annual temperature and climate change. Climate change is manifested by the melting of the ice caps, which has the consequence of increasing the level of the seas and oceans. Climate change also leads to extreme weather events such as floods, heat waves or the appearance of arid areas. Risks to human health have increased through deaths caused by heat or by changing the way some diseases are spread. Risks also exist for flora and wildlife due to rapid climate change.Many species of animals migrate, and other species of animals and plants are likely to disappear. Climate change also leads to costs for society and the economy due to damage to property and infrastructure, which have been more than 90 billion euros in the last 30 years, just because of the floods. In order to reduce the effects of environmental pollution, ecological energy production solutions need to be expanded. The article presents the creation of an experimental stand of a Solar - TLUD stove combined system for the production of domestic hot water in a sustainable way. TLUD is the acronym for "Top-Lit UpDraft". The advantage of the combined heat system is that it can provide thermal energy both during the day and at night. If the atmospheric conditions are unfavorable (clouds, fog) and do not allow the water to be heated only with the solar panel, TLUD gas stove can be used to supplement the energy. The TLUD stove has low Carbon Monoxide (CO) and Particulate Matter (PM) emissions. After gasification, about 10% of the carbon contained in the biomass is thermally stabilized and can be used as a "biochar" in agriculture or it can be burnt completely, resulting in very little ash. The stand is composed of a solar thermal panel, a TLUD stove, a boiler for hot water storage and an automation system with circulation pumps and temperature sensors. To record the experimental results, a data acquisition board was used, with which data were recorded from a series of temperature and flow transducers located in the installation. Experimental results include diagrams for temperature variation, available energy and heat accumulated in the boiler. Keywords: combined thermal system, TLUD stove, domestic hot water, solar thermal panel, data aquisition system


2019 ◽  
Vol 111 ◽  
pp. 01066
Author(s):  
F. J. Aguilar ◽  
D. Crespí ◽  
P. V. Quiles

This article presents an experimental and modelling work which uses a compact domestic hot water heat pump (DHW-HP) that is simultaneously powered from photovoltaic panels (PV) and from the grid. Results from more than 240 days of experimental works have been used in order to develop and to validate the computer model of the system. The program, implemented in MATLAB, is computationally ‘light’ enough to allow mid-term simulations yet also detailed enough to accurately and coherently portray stratification within thermal storage tanks. Finally, as an example of the model capabilities, it has been used to simulate a domestic hot water tapping cycle from the European Standard EN 16147.


2019 ◽  
Vol 11 (3) ◽  
pp. 599 ◽  
Author(s):  
Francisco Díaz Pérez ◽  
Ricardo Díaz Martín ◽  
Francisco Pérez Trujillo ◽  
Moises Díaz ◽  
Adib Mouhaffel

We analyze the energy consumption of domestic hot water (DHW) in the hotels of the archipelago of the Canary Islands (Spain). Currently, systems use fossil fuels of propane and gas oil. However, this paper analyzes several alternative systems which focus on renewable and mixed energies, such as biomass, solar thermal and heat pumps systems associated with an electric generation with photovoltaic solar panels for self-consumption. The carbon footprint generated is calculated for each method of generation of DHW. In our analysis, we demonstrate that by using a high-temperature heat pump with an average coefficient of performance (COP) equal to or greater than 4.4 associated with photovoltaic solar panels, a zero-emission domestic hot water system can be achieved, when the installation area of the photovoltaic solar panels is equal to that of the solar thermal system. The importance of DHW’s carbon footprint is proven, as is the efficiency of using high-temperature heat pumps associated with photovoltaic solar panels. As such, such mixed system suggests that the generation of DHW would have zero emissions with maximum annual savings according to hotel occupancy, between 112,417 and 137,644 tons of carbon dioxide (CO2), compared to current boilers based on fossil fuels.


2015 ◽  
Vol 797 ◽  
pp. 185-191
Author(s):  
Arkadiusz Gużda ◽  
Norbert Szmolke

The article compares two means for domestic hot water production (DHW) for a detached house that is using gas boiler with a closed combustion chamber and air source heat pump water heater (ASHPWH). An analysis of domestic hot water production using an air source heat pump was made taking into account coefficient of performance listed according to the new BS EN 16147 standard. The analysis of outlay related to the investment and operating costs was also performed. Ultimately, the more profitable choice for domestic hot water production was made.


Sign in / Sign up

Export Citation Format

Share Document