scholarly journals An Approach to the Creation and Presentation of Reference Gesture Datasets, for the Preservation of Traditional Crafts

2020 ◽  
Vol 10 (20) ◽  
pp. 7325
Author(s):  
Nikolaos Partarakis ◽  
Xenophon Zabulis ◽  
Antonis Chatziantoniou ◽  
Nikolaos Patsiouras ◽  
Ilia Adami

A wide spectrum of digital data are becoming available to researchers and industries interested in the recording, documentation, recognition, and reproduction of human activities. In this work, we propose an approach for understanding and articulating human motion recordings into multimodal datasets and VR demonstrations of actions and activities relevant to traditional crafts. To implement the proposed approach, we introduce Animation Studio (AnimIO) that enables visualisation, editing, and semantic annotation of pertinent data. AnimIO is compatible with recordings acquired by Motion Capture (MoCap) and Computer Vision. Using AnimIO, the operator can isolate segments from multiple synchronous recordings and export them in multimodal animation files. AnimIO can be used to isolate motion segments that refer to individual craft actions, as described by practitioners. The proposed approach has been iteratively designed for use by non-experts in the domain of 3D motion digitisation.

2011 ◽  
Vol 10 (10) ◽  
pp. 1957-1963 ◽  
Author(s):  
Lin Feng ◽  
Chang-You Xu ◽  
Bo Jin ◽  
Feng Chen ◽  
Zhi-Yuan Yin

Author(s):  
Chee Kwang Quah ◽  
Michael Koh ◽  
Alex Ong ◽  
Hock Soon Seah ◽  
Andre Gagalowicz

Through the advancement of electronics technologies, human motion analysis applications span many domains. Existing commercially available magnetic, mechanical and optical systems for motion capture and analyses are far from being able to operate in natural scenarios and environments. The current shortcoming of requiring the subject to wear sensors and markers on the body has prompted development directed towards a marker-less setup using computer vision approaches. However, there are still many challenges and problems in computer vision methods such as inconsistency of illumination, occlusion and lack of understanding and representation of its operating scenario. The authors present a videobased marker-less motion capture method that has the potential to operate in natural scenarios such as occlusive and cluttered scenes. In specific applications in sports biomechanics and education, which are stimulated by the usage of interactive digital media and augmented reality, accurate and reliable capture of human motion are essential.


Author(s):  
Chee Kwang Quah ◽  
Michael Koh ◽  
Alex Ong ◽  
Hock Soon Seah ◽  
Andre Gagalowicz

Through the advancement of electronics technologies, human motion analysis applications span many domains. Existing commercially available magnetic, mechanical and optical systems for motion capture and analyses are far from being able to operate in natural scenarios and environments. The current shortcoming of requiring the subject to wear sensors and markers on the body has prompted development directed towards a marker-less setup using computer vision approaches. However, there are still many challenges and problems in computer vision methods such as inconsistency of illumination, occlusion and lack of understanding and representation of its operating scenario. The authors present a videobased marker-less motion capture method that has the potential to operate in natural scenarios such as occlusive and cluttered scenes. In specific applications in sports biomechanics and education, which are stimulated by the usage of interactive digital media and augmented reality, accurate and reliable capture of human motion are essential.


Author(s):  
Jonathan Kenneth Sinclair ◽  
Lindsay Bottoms

AbstractRecent epidemiological analyses in fencing have shown that injuries and pain linked specifically to fencing training/competition were evident in 92.8% of fencers. Specifically the prevalence of Achilles tendon pathology has increased substantially in recent years, and males have been identified as being at greater risk of Achilles tendon injury compared to their female counterparts. This study aimed to examine gender differences in Achilles tendon loading during the fencing lunge.Achilles tendon load was obtained from eight male and eight female club level epee fencers using a 3D motion capture system and force platform information as they completed simulated lunges. Independent t-tests were performed on the data to determine whether differences existed.The results show that males were associated with significantly greater Achilles tendon loading rates in comparison to females.This suggests that male fencers may be at greater risk from Achilles tendon pathology as a function of fencing training/ competition.


Sign in / Sign up

Export Citation Format

Share Document