human motion capture
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 39)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Wenfeng Xu

AbstractTaking human movements has very good prospects of application in sports, animated projects, medicine and health and other areas. This article aims to study the human motion capture system in sports performances based on the Internet of Things technology and wireless inertial sensors. This article first introduces the theory and characteristics of the Internet of Things and motion capture; next, according to the different characteristics of the sensors in the inertial motion capture system, a two-step Kalman filter is proposed to process the accelerometer and the magnetometer separately and, finally, the structure of this article. The human body motion model is used to analyze the acceleration dynamic error that occurs during the motion. In addition, an inertial motion capture system is constructed to obtain and visualize the structure of each motion node. The experimental results in this paper show that the Kalman filtering algorithm can ensure the accuracy of angle estimation under different motion states and has good fault tolerance to external interference. Among them, the error of the static state is reduced by 23.1%.


Author(s):  
Sen Qiu ◽  
Hongkai Zhao ◽  
Nan Jiang ◽  
Donghui Wu ◽  
Guangcai Song ◽  
...  

Author(s):  
Manuel Trinidad-Fernández ◽  
Antonio Cuesta-Vargas ◽  
Peter Vaes ◽  
David Beckwée ◽  
Francisco-Ángel Moreno ◽  
...  

AbstractA human motion capture system using an RGB-D camera could be a good option to understand the trunk limitations in spondyloarthritis. The aim of this study is to validate a human motion capture system using an RGB-D camera to analyse trunk movement limitations in spondyloarthritis patients. Cross-sectional study was performed where spondyloarthritis patients were diagnosed with a rheumatologist. The RGB-D camera analysed the kinematics of each participant during seven functional tasks based on rheumatologic assessment. The OpenNI2 library collected the depth data, the NiTE2 middleware detected a virtual skeleton and the MRPT library recorded the trunk positions. The gold standard was registered using an inertial measurement unit. The outcome variables were angular displacement, angular velocity and lineal acceleration of the trunk. Criterion validity and the reliability were calculated. Seventeen subjects (54.35 (11.75) years) were measured. The Bending task obtained moderate results in validity (r = 0.55–0.62) and successful results in reliability (ICC = 0.80–0.88) and validity and reliability of angular kinematic results in Chair task were moderate and (r = 0.60–0.74, ICC = 0.61–0.72). The kinematic results in Timed Up and Go test were less consistent. The RGB-D camera was documented to be a reliable tool to assess the movement limitations in spondyloarthritis depending on the functional tasks: Bending task. Chair task needs further research and the TUG analysis was not validated. Graphical abstract Comparation of both systems, required software for camera analysis, outcomes and final results of validity and reliability of each test.


2021 ◽  
Vol 40 (4) ◽  
pp. 1-15
Author(s):  
Soshi Shimada ◽  
Vladislav Golyanik ◽  
Weipeng Xu ◽  
Patrick Pérez ◽  
Christian Theobalt

2021 ◽  
Vol 40 (4) ◽  
pp. 1-15
Author(s):  
Soshi Shimada ◽  
Vladislav Golyanik ◽  
Weipeng Xu ◽  
Patrick Pérez ◽  
Christian Theobalt

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wanyi Li ◽  
Yuqi Zeng ◽  
Qian Zhang ◽  
Yilin Wu ◽  
Guoming Chen

Three-dimensional (3D) human motion capture is a hot researching topic at present. The network becomes advanced nowadays, the appearance of 3D human motion is indispensable in the multimedia works, such as image, video, and game. 3D human motion plays an important role in the publication and expression of all kinds of medium. How to capture the 3D human motion is the key technology of multimedia product. Therefore, a new algorithm called incremental dimension reduction and projection position optimization (IDRPPO) is proposed in this paper. This algorithm can help to learn sparse 3D human motion samples and generate the new ones. Thus, it can provide the technique for making 3D character animation. By taking advantage of the Gaussian incremental dimension reduction model (GIDRM) and projection position optimization, the proposed algorithm can learn the existing samples and establish the relevant mapping between the low dimensional (LD) data and the high dimensional (HD) data. Finally, the missing frames of input 3D human motion and the other type of 3D human motion can be generated by the IDRPPO.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3029
Author(s):  
Chen Liu ◽  
Anna Wang ◽  
Chunguang Bu ◽  
Wenhui Wang ◽  
Haijing Sun

High-quality and complete human motion 4D reconstruction is of great significance for immersive VR and even human operation. However, it has inevitable self-scanning constraints, and tracking under monocular settings also has strict restrictions. In this paper, we propose a human motion capture system combined with human priors and performance capture that only uses a single RGB-D sensor. To break the self-scanning constraint, we generated a complete mesh only using the front view input to initialize the geometric capture. In order to construct a correct warping field, most previous methods initialize their systems in a strict way. To maintain high fidelity while increasing the easiness of the system, we updated the model while capturing motion. Additionally, we blended in human priors in order to improve the reliability of model warping. Extensive experiments demonstrated that our method can be used more comfortably while maintaining credible geometric warping and remaining free of self-scanning constraints.


Sign in / Sign up

Export Citation Format

Share Document