scholarly journals Effect of Demand Side Management on the Operation of PV-Integrated Distribution Systems

2020 ◽  
Vol 10 (21) ◽  
pp. 7551
Author(s):  
Jaser A. Sa’ed ◽  
Zakariya Wari ◽  
Fadi Abughazaleh ◽  
Jafar Dawud ◽  
Salvatore Favuzza ◽  
...  

In this new era of high electrical energy dependency, electrical energy must be abundant and reliable, thus smart grids are conducted to deliver load demands. Hence, smart grids are implemented alongside distributed generation of renewable energies to increase the reliability and controllability of the grid, but, with the very volatile nature of the Distributed Generation (DG), Demand Side Management (DSM) helps monitor and control the load shape of the consumed power. The interaction of DSM with the grid provides a wide range of mutual benefits to the user, the utility and the market. DSM methodologies such as Conservation Voltage Reduction (CVR) and Direct Load Control (DLC) collaborate in the reduction of plant generation and reciprocally to the comprehensive cost. The aim of this paper is to investigate the effects caused by the implementation of DSM on the operation of PV-integrated distribution systems. The algorithms of CVR, DLC and the combination of CVR and DLC were implemented using OpenDSS and MATLAB. The effectiveness of the aforementioned schemes was verified on IEEE 30-Bus test system. Various possible integration scenarios between Photovoltaic (PV) and DSM schemes are illustrated. The optimal integration of such schemes constraining the reduction of energy consumed by the user and utility is presented. The results show that the implemented DSM algorithms provide a noticeable reduction in energy losses and reduction in consumed energy.

2021 ◽  
Vol 2 (1) ◽  
pp. 17-31
Author(s):  
S. Dhivya ◽  
R. Arul

The number of distributed environmentally friendly energy sources and generators necessitates new operating methods and a power network board to preserve or even increase the efficiency and quality of the power supply. Similarly, the growth of matriculates promotes the formation of new institutional systems, in which power and power exchanges become increasingly essential. Because of how an inactive entity traditionally organizes distribution systems, the DG’s connection inevitably changes the system’s qualifications to which it is connected. As a consequence of the Distributed Generation, this presumption is currently legal and non-existent. This article glides on demand side management and analysis on distributed energy resources. Investigation of DSM along with zonal wise classification has been carried out in this survey. Its merits and applications are also presented.


Author(s):  
Ayman Uddin Mahin ◽  
Fabliha Ahmed ◽  
S. M. Ishraqul Huq ◽  
Nahid-Ur-Rahman Chowdhury

Demand of electrical energy is growing day by day worldwide. To meet this increasing demand, generation is needed to be increased subsequently. Increasing generation is not an easy task as it may require setting up new generating units, changing transmission lines, control equipments, etc. Moreover, increased generation also causes increased environment pollution. An alternate approach that can create balance between demand and supply of electricity without increasing generation is demand side management (DSM). Furthermore, demand side management has the potential to reduce the use of energy resources resulting in less environment pollution. In this paper, three DSM techniques: using solar system, load limiting, deliberate load reduction are applied for residential users of Dhaka, Bangladesh and the results are compared with two traditional techniques: energy efficiency, direct load control. It has been found that by using solar system at home significant amount of electrical energy can be saved.


2009 ◽  
Vol 20 (3) ◽  
pp. 14-21 ◽  
Author(s):  
Afua Mohamed ◽  
Mohamed Tariq Khan

A review of electrical energy management tech-niques on the supply side and demand side is pre-sented. The paper suggests that direct load control, interruptible load control, and time of use (TOU) are the main load management techniques used on the supply side (SS). The supply side authorities normally design these techniques and implement them on demand side consumers. Load manage-ment (LM) initiated on the demand side leads to valley filling and peak clipping. Power factor correc-tion (PFC) techniques have also been analysed and presented. It has been observed that many power utilities, especially in developing countries, have neither developed nor implemented DSM for their electrical energy management. This paper proposes that the existing PFC techniques should be re-eval-uated especially when loads are nonlinear. It also recommends automatic demand control methods to be used on the demand side in order to acquire optimal energy consumption. This would lead to improved reliability of the supply side and thereby reducing environmental degradation.


2020 ◽  
Author(s):  
Paolo Scarabaggio ◽  
Sergio Grammatico ◽  
Raffaele Carli ◽  
Mariagrazia Dotoli

In this paper, we propose a distributed demand side management (DSM) approach for smart grids taking into account uncertainty in wind power forecasting. The smart grid model comprehends traditional users as well as active users (prosumers). Through a rolling-horizon approach, prosumers participate in a DSM program, aiming at minimizing their cost in the presence of uncertain wind power generation by a game theory approach.<br>We assume that each user selfishly formulates its grid optimization problem as a noncooperative game.<br>The core challenge in this paper is defining an approach to cope with the uncertainty in wind power availability. <br>We tackle this issue from two different sides: by employing the expected value to define a deterministic counterpart for the problem and by adopting a stochastic approximated framework.<br>In the latter case, we employ the sample average approximation technique, whose results are based on a probability density function (PDF) for the wind speed forecasts. We improve the PDF by using historical wind speed data, and by employing a control index that takes into account the weather condition stability.<br><div>Numerical simulations on a real dataset show that the proposed stochastic strategy generates lower individual costs compared to the standard expected value approach.</div><div><br></div><div>Preprint of paper submitted to IEEE Transactions on Control Systems Technology<br></div>


Sign in / Sign up

Export Citation Format

Share Document