scholarly journals A Sequential and Intensive Weighted Language Modeling Scheme for Multi-Task Learning-Based Natural Language Understanding

2021 ◽  
Vol 11 (7) ◽  
pp. 3095
Author(s):  
Suhyune Son ◽  
Seonjeong Hwang ◽  
Sohyeun Bae ◽  
Soo Jun Park ◽  
Jang-Hwan Choi

Multi-task learning (MTL) approaches are actively used for various natural language processing (NLP) tasks. The Multi-Task Deep Neural Network (MT-DNN) has contributed significantly to improving the performance of natural language understanding (NLU) tasks. However, one drawback is that confusion about the language representation of various tasks arises during the training of the MT-DNN model. Inspired by the internal-transfer weighting of MTL in medical imaging, we introduce a Sequential and Intensive Weighted Language Modeling (SIWLM) scheme. The SIWLM consists of two stages: (1) Sequential weighted learning (SWL), which trains a model to learn entire tasks sequentially and concentrically, and (2) Intensive weighted learning (IWL), which enables the model to focus on the central task. We apply this scheme to the MT-DNN model and call this model the MTDNN-SIWLM. Our model achieves higher performance than the existing reference algorithms on six out of the eight GLUE benchmark tasks. Moreover, our model outperforms MT-DNN by 0.77 on average on the overall task. Finally, we conducted a thorough empirical investigation to determine the optimal weight for each GLUE task.

Author(s):  
Andrew M. Olney ◽  
Natalie K. Person ◽  
Arthur C. Graesser

The authors discuss Guru, a conversational expert ITS. Guru is designed to mimic expert human tutors using advanced applied natural language processing techniques including natural language understanding, knowledge representation, and natural language generation.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2300
Author(s):  
Rade Matic ◽  
Milos Kabiljo ◽  
Miodrag Zivkovic ◽  
Milan Cabarkapa

In recent years, gradual improvements in communication and connectivity technologies have enabled new technical possibilities for the adoption of chatbots across diverse sectors such as customer services, trade, and marketing. The chatbot is a platform that uses natural language processing, a subset of artificial intelligence, to find the right answer to all users’ questions and solve their problems. Advanced chatbot architecture that is extensible, scalable, and supports different services for natural language understanding (NLU) and communication channels for interactions of users has been proposed. The paper describes overall chatbot architecture and provides corresponding metamodels as well as rules for mapping between the proposed and two commonly used NLU metamodels. The proposed architecture could be easily extended with new NLU services and communication channels. Finally, two implementations of the proposed chatbot architecture are briefly demonstrated in the case study of “ADA” and “COVID-19 Info Serbia”.


Triangle ◽  
2018 ◽  
pp. 65
Author(s):  
Veronica Dahl

Natural Language Processing aims to give computers the power to automatically process human language sentences, mostly in written text form but also spoken, for various purposes. This sub-discipline of AI (Artificial Intelligence) is also known as Natural Language Understanding.


Author(s):  
Ping Chen ◽  
Wei Ding ◽  
Chengmin Ding

Knowledge representation is essential for semantics modeling and intelligent information processing. For decades researchers have proposed many knowledge representation techniques. However, it is a daunting problem how to capture deep semantic information effectively and support the construction of a large-scale knowledge base efficiently. This article describes a new knowledge representation model, SenseNet, which provides semantic support for commonsense reasoning and natural language processing. SenseNet is formalized with a Hidden Markov Model. An inference algorithm is proposed to simulate human-like natural language understanding procedure. A new measurement, confidence, is introduced to facilitate the natural language understanding. The authors present a detailed case study of applying SenseNet to retrieving compensation information from company proxy filings.


Author(s):  
Roberto Navigli

In this paper I look at Natural Language Understanding, an area of Natural Language Processing aimed at making sense of text, through the lens of a visionary future: what do we expect a machine should be able to understand? and what are the key dimensions that require the attention of researchers to make this dream come true?


Author(s):  
Ping Chen ◽  
Wei Ding ◽  
Chengmin Ding

Knowledge representation is essential for semantics modeling and intelligent information processing. For decades researchers have proposed many knowledge representation techniques. However, it is a daunting problem how to capture deep semantic information effectively and support the construction of a large-scale knowledge base efficiently. This paper describes a new knowledge representation model, SenseNet, which provides semantic support for commonsense reasoning and natural language processing. SenseNet is formalized with a Hidden Markov Model. An inference algorithm is proposed to simulate human-like natural language understanding procedure. A new measurement, confidence, is introduced to facilitate the natural language understanding. The authors present a detailed case study of applying SenseNet to retrieving compensation information from company proxy filings.


10.29007/npsn ◽  
2018 ◽  
Author(s):  
Manfred Eppe ◽  
Sean Trott ◽  
Vivek Raghuram ◽  
Jerome Feldman ◽  
Adam Janin

Natural Language Understanding (NLU) has been a long-standing goal of AI and many related fields, but it is often dismissed as very hard to solve. NLU is required complex flexible systems that take action without further human intervention. This inherently involves strong semantic (meaning) capabilities to parse queries and commands correctly and with high confidence, because an error by a robot or automated vehicle could be disastrous. We describe an implemented general framework, the ECG2 system, that supports the deployment of NLU systems over a wide range of application domains. The framework is based on decades of research on embodied action-oriented semantics and efficient computational realization of a deep semantic analyzer (parser). This makes it linguistically much more flexible, general and reliable than existing shallow approaches that process language without considering its deeper semantics. In this paper we describe our work from a Computer Science perspective of system integration, and show why our particular architecture requires considerably less effort to connect the system to new applications compared to other language processing tools.


AI Magazine ◽  
2017 ◽  
Vol 38 (4) ◽  
pp. 43-56 ◽  
Author(s):  
Marjorie McShane

Developing cognitive agents with human-level natural language understanding (NLU) capabilities requires modeling human cognition because natural, unedited utterances regularly contain ambiguities, ellipses, production errors, implicatures, and many other types of complexities. Moreover, cognitive agents must be nimble in the face of incomplete interpretations since even people do not perfectly understand every aspect of every utterance they hear. So, once an agent has reached the best interpretation it can, it must determine how to proceed – be that acting upon the new information directly, remembering an incomplete interpretation and waiting to see what happens next, seeking out information to fill in the blanks, or asking its interlocutor for clarification. The reasoning needed to support NLU extends far beyond language itself, including, non-exhaustively, the agent’s understanding of its own plans and goals; its dynamic modeling of its interlocutor’s knowledge, plans, and goals, all guided by a theory of mind; its recognition of diverse aspects human behavior, such as affect, cooperative behavior, and the effects of cognitive biases; and its integration of linguistic interpretations with its interpretations of other perceptive inputs, such as simulated vision and non-linguistic audition. Considering all of these needs, it seems hardly possible that fundamental NLU will ever be achieved through the kinds of knowledge-lean text-string manipulation being pursued by the mainstream natural language processing (NLP) community. Instead, it requires a holistic approach to cognitive modeling of the type we are pursuing in a paradigm called OntoAgent.


Sign in / Sign up

Export Citation Format

Share Document