scholarly journals Safety Analysis of a Certifiable Air Data System Based on Synthetic Sensors for Flow Angle Estimation

2021 ◽  
Vol 11 (7) ◽  
pp. 3127
Author(s):  
Angelo Lerro ◽  
Manuela Battipede

This work deals with the safety analysis of an air data system (ADS) partially based on synthetic sensors. The ADS is designed for the small aircraft transportation (SAT) community and is suitable for future unmanned aerial vehicles and urban air mobility applications. The ADS’s main innovation is based on estimation of the flow angles (angle-of-attack and angle-of-sideslip) using synthetic sensors instead of classical vanes (or sensors), whereas pressure and temperature are directly measured with Pitot and temperature probes. As the air data system is a safety-critical system, safety analyses are performed and the results are compared with the safety objectives required by the aircraft integrator. The present paper introduces the common aeronautical procedures for system safety assessment applied to a safety critical system partially based on synthetic sensors. The mean time between failures of ADS’s sub-parts are estimated on a statistical basis in order to evaluate the failure rate of the ADS’s functions. The proposed safety analysis is also useful in identifying the most critical air data system parts and sub-parts. Possible technological gaps to be filled to achieve the airworthiness safety objectives with nonredundant architectures are also identified.

2014 ◽  
Vol 693 ◽  
pp. 92-97
Author(s):  
Pavol Tanuska ◽  
Milan Strbo ◽  
Augustin Gese ◽  
Barbora Zahradnikova

The objective of the article is to demonstrate the principle of the SQMD method concept for performing safety analysis on the example of a dynamical system. The safety analysis is performed in the process of designing a control system for safety-critical system processes. The safety analysis is aimed at using the models to monitor different critical points of the system. For the purpose of modelling, we suggest using the SQMD method combining qualitative and quantitative procedures of modelling and taking both methods advantages.


2014 ◽  
Vol 48 (3) ◽  
pp. 25-42 ◽  
Author(s):  
Narayanaswamy Vedachalam ◽  
Gidugu Ananada Ramadass ◽  
Malayath Aravindakshan Atmanand

AbstractThis paper reviews the latest advancements in subsea technologies associated with the safety of deep-water human occupied vehicles. Human occupied submersible operations are required for deep-water activities, such as high-resolution bathymetry, biological and geological surveys, search activities, salvage operations, and engineering support for underwater operations. As this involves direct human presence, the system has to be extremely safe and reliable. Based on applicable IEC 61508 Standards for health, safety, and environment (HSE), the safety integrity level requirements for the submersible safety systems are estimated. Safety analyses are done on 10 critical submersible safety systems with the assumption that the submersible is utilized for 10 deep-water missions per year. The results of the analyses are compared with the estimated target HSE requirements, and it is found that, with the present technological maturity and safety-centered design, it is possible to meet the required safety integrity levels. By proper maintenance, it is possible to keep the mean time between failures to more than 9 years. The results presented shall serve as a model for designers to arrive at the required trade-off between the capital expenditure, operating expenditure, and required safety levels.


2019 ◽  
Vol 18 (2) ◽  
pp. 1:1 ◽  
Author(s):  
Romina Eramo ◽  
Florent Marchand de Kerchove ◽  
Maximilien Colange ◽  
Michele Tucci ◽  
Julien Ouy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document