scholarly journals Development of a Wearable Finger Exoskeleton for Rehabilitation

2021 ◽  
Vol 11 (9) ◽  
pp. 4145
Author(s):  
Carlos Hernández-Santos ◽  
Yasser A. Davizón ◽  
Alejandro R. Said ◽  
Rogelio Soto ◽  
Luis Carlos Felix-Herrán ◽  
...  

This research work shows a new architecture of a novel wearable finger exoskeleton for rehabilitation; the proposed design consists of a one degree of freedom mechanism that generates the flexion and extension movement for the proximal, medial and distal phalange of the fingers to assist patients during the rehabilitation process, after neurological trauma, such as a stroke. The anatomy and anthropometric measures for the hand were used to define the design of the mechanism. In the analytic part, the representative equations for the forward and inverse kinematic analysis of the fingers are obtained, also a dynamic analysis is presented. The position and displacement continued for the structural analysis, were developed by following a static analysis, to know the deformation that the structure links show when an external load is applied in the mechanism. As result, a prototype was manufactured with acrylonitrile butadiene styrene (ABS) using an additive manufacturing machine.

2020 ◽  
Vol 12 (9) ◽  
pp. 3568 ◽  
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Athena Maniadi ◽  
Emmanuel Koudoumas ◽  
Achilles Vairis ◽  
...  

Sustainability in additive manufacturing refers mainly to the recycling rate of polymers and composites used in fused filament fabrication (FFF), which nowadays are rapidly increasing in volume and value. Recycling of such materials is mostly a thermomechanical process that modifies their overall mechanical behavior. The present research work focuses on the acrylonitrile-butadiene-styrene (ABS) polymer, which is the second most popular material used in FFF-3D printing. In order to investigate the effect of the recycling courses on the mechanical response of the ABS polymer, an experimental simulation of the recycling process that isolates the thermomechanical treatment from other parameters (i.e., contamination, ageing, etc.) has been performed. To quantify the effect of repeated recycling processes on the mechanic response of the ABS polymer, a wide variety of mechanical tests were conducted on FFF-printed specimens. Regarding this, standard tensile, compression, flexion, impact and micro-hardness tests were performed per recycle repetition. The findings prove that the mechanical response of the recycled ABS polymer is generally improved over the recycling repetitions for a certain number of repetitions. An optimum overall mechanical behavior is found between the third and the fifth repetition, indicating a significant positive impact of the ABS polymer recycling, besides the environmental one.


Sign in / Sign up

Export Citation Format

Share Document