scholarly journals Power Allocation for Secrecy-Capacity-Optimization-Artificial-Noise Secure MIMO Precoding Systems under Perfect and Imperfect Channel State Information

2021 ◽  
Vol 11 (10) ◽  
pp. 4558
Author(s):  
Yebo Gu ◽  
Bowen Huang ◽  
Zhilu Wu

In this paper, we consider the physical layer security problem of the wireless communication system. For the multiple-input, multiple-output (MIMO) wireless communication system, secrecy capacity optimization artificial noise (SCO−AN) is introduced and studied. Unlike its traditional counterpart, SCO−AN is an artificial noise located in the range space of the channel state information space and thus results in a significant increase in the secrecy capacity. Due to the limitation of transmission power, making rational use of this power is crucial to effectively increase the secrecy capacity. Hence, in this paper, the objective function of transmission power allocation is constructed. We also consider the imperfect channel estimation in the power allocation problems. In traditional AN research conducted in the past, the expression of the imperfect channel estimation effect was left unknown. Still, the extent to which the channel estimation error impacts the accuracy of secrecy capacity computation is not negligible. We derive the expression of channel estimation error for least square (LS) and minimum mean squared error (MMSE) channel estimation. The objective function for transmission power allocation is non-convex. That is, the traditional gradient method cannot be used to solve this non-convex optimization problem of power allocation. An improved sequence quadratic program (ISQP) is therefore applied to solve this optimization problem. The numerical result shows that the ISQP is better than other algorithms, and the power allocation as derived from ISQP significantly increases secrecy capacity.

2020 ◽  
Author(s):  
Yebo Gu ◽  
Zhilu Wu ◽  
Zhendong Yin ◽  
Bowen Huang

Abstract The secure transmission problem of MIMO wireless system in fading channels is studied in this paper. We add a secrecy capacity optimization artificial noise(SCO-AN) to the transported signal for improving the security performance of the system. The closed-form expression of secrecy capacity's lower bound is obtained. Base on the closed-form expression of secrecy capacity's lower bound, We optimize the power allocation between the information-bearing signal and the SCO-AN. By calculating, the optimal ratio of power alloation betwenn the information-bearing signal and the SCO-AN is obtained. Through simulation, the results shows the secrecy capacity increases with more receiving antennas and less eavesdropping antennas.And more power should be allocated to the SCO-AN with the increase of the colluding eavedroppers.More over, we study the effect of channel estimation error on power allocation between information-bearing signal and SCO-AN and find that more power should be allocated to decrease eavesdroppers capacity if the channel estimation is not perfect.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Dan Deng ◽  
Yanyi Rao ◽  
Fusheng Zhu

The effects of hardware impairments with imperfect channel estimation for cache-enabled UAV networks are studied in this paper. The effects of the setup parameters, such as the number of cached or relaying nodes, the hardware impairment factor, the channel estimation error, and the transmission SNR, on the outage probability are present by deriving the exact closed-form expressions on outage probability. Also, the asymptotic results are present when the transmission SNR is large enough. From the asymptotic analysis, we can see that there is an error floor introduced by the hardware impairments and imperfect channel estimation. Specifically, the error floor is dependent on the channel estimation error factor, the hardware impairment distortion factor, and the QoS requirements. And the diversity order of the error floor for the cached/relaying links is equal to the number of cached/relaying UAV nodes.


2021 ◽  
Vol 11 (2) ◽  
pp. 118-129
Author(s):  
Reem Aldebes ◽  
Kaharudin Dimyati ◽  
Effariza Hanafi

The fifth generation (5G) networks must provide the massively increased number of users by thousand times higher data rate at lower power consumption. Thus, optimizing the energy efficiency (EE) becomes an essential issue that has to be researched from the green communication perspective. Non-orthogonal multiple access (NOMA) is considered one of the high potential techniques in fifth-generation systems. This technology is favorable to maximize the energy efficiency and the spectrum efficiency by composing different signals at the same time on the same carrier at different power levels. In this paper, a low complexity power allocation algorithm is proposed in imperfect channel state information (CSI) downlink NOMA cellular system, where obtaining full CSI at the base station is considered a challenge. The proposed algorithm relies on the fact that the allocated power is inversely proportional to the channel strength of the user to implement the successive interference cancellation (SIC) technique at the user terminal to reconstruct the desired signal. The performance of the system is analyzed in terms of energy efficiency and outage probability and compared to the conventional orthogonal multiple access (OMA) system. Results show that the proposed algorithm increases the energy efficiency by about 50% compared to the conventional OMA technology, and an improvement in the outage probability has been achieved. Furthermore, the effect of the error in the channel estimation on the energy efficiency in imperfect CSI NOMA system is evaluated. The simulation shows that the energy efficiency reduces when the channel estimation error increases; and the best performance is achieved in the perfect CSI case where the channel estimation error is zero.


Sign in / Sign up

Export Citation Format

Share Document