scholarly journals Wireless Power Transfer Using Harvested Radio Frequency Energy with Magnetic Resonance Coupling to Charge Mobile Device Batteries

2021 ◽  
Vol 11 (16) ◽  
pp. 7707
Author(s):  
Neetu Ramsaroop ◽  
Oludayo O. Olugbara

This research paper presents the design of a wireless power transfer (WPT) circuit integrated with magnetic resonance coupling (MRC) and harvested radio frequency (RF) energy to wirelessly charge the battery of a mobile device. A capacitor (100 µF, 16 V) in the RF energy harvesting circuit stored the converted power, and the accumulated voltage stored in the capacitor was 9.46 V. The foundation of the proposed WPT prototype circuit included two coils (28 AWG)—a transmitter coil, and a receiver coil. The transmitter coil was energized by the alternating current (AC), which produced a magnetic field, which in turn induced a current in the receiver coil. The harvested RF energy (9.46 V) was converted into AC, which energized the transmitter coil and generated a magnetic field. The electronics in the receiver coil then converted the AC into direct current (DC), which became usable power to charge the battery of a mobile device. The experimental setup based on mathematical modeling and simulation displayed successful charging capabilities of MRC, with the alternate power source being the harvested RF energy. Mathematical formulae were applied to calculate the amount of power generated from the prototype circuit. LTSpice simulation software was applied to demonstrate the behavior of the different components in the circuit layout for effective WPT transfer.

2013 ◽  
Vol 811 ◽  
pp. 651-656
Author(s):  
Hao Wang ◽  
An Na Wang ◽  
Qiang Zhao ◽  
Yu Zhang

e. The formalism of wireless power transmission is discussed coupled mode theory can be used to describe the resonance process. According to the changing process of input impedance and input current to describe the demarcate of resonant frequency. also demonstrate that loop circuits have an important effect of the resonant magnetic field distribution.


2016 ◽  
Vol 197 (1) ◽  
pp. 46-54 ◽  
Author(s):  
KOHEI SHIMAMURA ◽  
MASAYOSHI KOIZUMI ◽  
YOSHIHIRO MIZUNO ◽  
KIMIYA KOMURASAKI

Sign in / Sign up

Export Citation Format

Share Document