scholarly journals Optimal Generation Start-Up Methodology for Power System Restoration Considering Conventional and Non-Conventional Renewable Energy Sources

2021 ◽  
Vol 11 (17) ◽  
pp. 8246
Author(s):  
Ricardo Andrés Pardo-Martínez ◽  
Jesús M. López-Lezama ◽  
Nicolás Muñoz-Galeano

Power system restoration must be accomplished as soon as possible after a blackout. In this process, available black-start (BS) units are used to provide cranking power to non-black-start (NBS) units so as to maximize the overall power system generation capacity. This procedure is known as the generation start-up problem, which is intrinsically combinatorial with complex non-linear constraints. This paper presents a new mixed integer linear programming (MILP) formulation for the generation start-up problem that integrates non-conventional renewable energy sources (NCRES) and battery energy storage systems (BESS). The main objective consists of determining an initial starting sequence for both BS and NBS units that would maximize the generation capacity of the system while meeting the non-served demand of the network. The nature of the proposed model leads to global optimal solutions, clearly outperforming heuristic and enumerative approaches, since the latter may take higher computational time while the former do not guarantee global optimal solutions. Several tests were carried out on the IEEE 39-bus test system considering BESS as well as wind and solar generation. The results showed the positive impact of NCRES in the restoration processes and evidenced the effectiveness and applicability of the proposed approach. It was found that including NCRES and BESS in the restoration process allows a reduction of 24.4% of the objective function compared to the classical restoration without these technologies.

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2862
Author(s):  
Mika Korkeakoski

Renewable Energy Sources (RES) have become increasingly desirable worldwide in the fight against global climate change. The sharp decrease in costs of especially wind and solar photovoltaics (PV) have created opportunities to move from dependency on conventional fossil fuel-based electricity production towards renewable energy sources. Renewables experience around 7% (in 2018) annual growth rate in the electricity production globally and the pace is expected to further increase in the near future. Cuba is no exception in this regard, the government has set an ambitious renewable energy target of 24% RES of electricity production by the year 2030. The article analyses renewable energy trajectories in Isla de la Juventud, Cuba, through different future energy scenarios utilizing EnergyPLAN tool. The goal is to identify the best fit and least cost options in transitioning towards 100% electric power systemin Isla de la Juventud, Cuba. The work is divided into analysis of (1) technical possibilities for five scenarios in the electricity production with a 40% increase of electricity consumption by 2030: Business As Usual (BAU 2030, with the current electric power system (EPS) setup), VISION 2030 (according to the Cuban government plan with 24% RES), Advanced Renewables (ARES, with 50% RES), High Renewables (HiRES, with 70% RES), and Fully Renewables (FullRES, with 100% RES based electricity system) scenarios and (2) defining least cost options for the five scenarios in Isla de la Juventud, Cuba. The results show that high penetration of renewables is technically possible even up to 100% RES although the best technological fit versus least cost options may not favor the 100% RES based systems with the current electric power system (EPS) setup. This is due to realities in access to resources, especially importation of state of the art technological equipment and biofuels, financial and investment resources, as well as the high costs of storage systems. The analysis shows the Cuban government vision of reaching 24% of RES in the electricity production by 2030 can be exceeded even up to 70% RES based systems with similar or even lower costs in the near future in Isla de la Juventud. However, overcoming critical challenges in the economic, political, and legal conditions are crucially important; how will the implementation of huge national capital investments and significant involvement of Foreign Direct Investments (FDI) actualize to support achievement of the Cuban government’s 2030 vision?


2020 ◽  
Vol 6 ◽  
pp. 1597-1603
Author(s):  
Lei Liu ◽  
Tomonobu Senjyu ◽  
Takeyoshi Kato ◽  
Abdul Motin Howlader ◽  
Paras Mandal ◽  
...  

Author(s):  
Jianqiang Luo ◽  
Yiqing Zou ◽  
Siqi Bu

Various renewable energy sources such as wind power and photovoltaic (PV) have been increasingly integrated into the power system through power electronic converters in recent years. However, power electronic converter-driven stability issues under specific circumstances, for instance, modal resonances might deteriorate the dynamic performance of the power systems or even threaten the overall stability. In this paper, the integration impact of a hybrid renewable energy source (HRES) system on modal interaction and converter-driven stability is investigated in an IEEE 16-machine 68-bus power system. Firstly, an HRES system is introduced, which consists of full converter-based wind power generation (FCWG) and full converter-based photovoltaic generation (FCPV). The equivalent dynamic models of FCWG and FCPV are then established, followed by the linearized state-space modeling. On this basis, converter-driven stability analyses are performed to reveal the modal resonance mechanisms of the interconnected power systems and the modal interaction phenomenon. Additionally, time-domain simulations are conducted to verify effectiveness of dynamic models and support the converter-driven stability analysis results. To avoid detrimental modal resonances, an optimization strategy is further proposed by retuning the controller parameters of the HRES system. The overall results demonstrate the modal interaction effect between external AC power system and the HRES system and its various impacts on converter-driven stability.


Sign in / Sign up

Export Citation Format

Share Document