scholarly journals Integral-Type Edge-Event- and Edge-Self-Triggered Synchronization to Multi-Agent Systems with Lur’e Nonlinear Dynamics

2021 ◽  
Vol 11 (19) ◽  
pp. 9137
Author(s):  
Ming-Zhe Dai ◽  
Jie Liu ◽  
Jin Wu ◽  
Chengxi Zhang ◽  
Dang-Jun Zhao

This paper proposes event- and self-triggered control strategies to achieve distributed synchronization for multiple Lur’e systems with unknown static nonlinearities. Firstly, the integral-type edge-event-triggered function is designed here without Zeno behaviors. Compared to the traditional event-triggered schemes, the considered algorithm has the advantages of reducing controller update frequency and sensor energy consumption. Then, the integral-type self-triggered is further investigated, which implements discontinuous monitoring and discontinuous agent listening. Finally, numerical simulations verified the effectiveness and superiority of our policies.

2020 ◽  
Vol 09 (01) ◽  
pp. 23-34
Author(s):  
Xiaofeng Chai ◽  
Jian Liu ◽  
Yao Yu ◽  
Jianxiang Xi ◽  
Changyin Sun

In this paper, we study the practical fixed-time event-triggered time-varying formation tracking problem of leader-follower multi-agent systems with multi-dimensional dynamics. Fixed-time event-triggered control schemes with continuous communication and intermittent communication are developed, respectively. Continuous communication and measurement are avoided, and computation cost is reduced greatly in the latter scheme. And the settling time is to be specified regardless of initial states of agents. Meanwhile, tracking errors are adjustable as desired with expected settling time. It is demonstrated that time-varying formation tracking can be achieved under the two proposed control schemes and Zeno behavior can be excluded. Finally, numerical examples are provided to illustrate the effectiveness of the proposed control strategies.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4059
Author(s):  
Tao Li ◽  
Quan Qiu ◽  
Chunjiang Zhao

This paper presents the communication strategy for second-order multi-agent systems with nonlinear dynamics. To address the problem of the scarcity of communication channel resources and get rid of using continuous signals among the followers in lead-follower multi-agent systems, a novel event-triggered communication mechanism is proposed in this paper. To avoid employing the centralized information that depends on the Laplacian matrix spectrum, a network protocol with updated coupling gains is proposed, as well as an event-triggered strategy with updated thresholds. To eliminate the ill effects of inter-node communicating noise, relative positions are employed by the protocol instead of absolute positions. By a Lyapunov–Krasovskii functional, it is rigorously proven that the leader-following consensus of MASs is achieved without Zeno behavior, under the control of the proposed protocol with an event-triggered mechanism communication. The effectiveness of the proposed protocol is verified through numerical examples.


Sign in / Sign up

Export Citation Format

Share Document