scholarly journals Wind Farm Layout Optimization with Different Hub Heights in Manjil Wind Farm Using Particle Swarm Optimization

2021 ◽  
Vol 11 (20) ◽  
pp. 9746
Author(s):  
Menova Yeghikian ◽  
Abolfazl Ahmadi ◽  
Reza Dashti ◽  
Farbod Esmaeilion ◽  
Alireza Mahmoudan ◽  
...  

Nowadays, optimizing wind farm configurations is one of the biggest concerns for energy communities. The ongoing investigations have so far helped increasing power generation and reducing corresponding costs. The primary objective of this study is to optimize a wind farm layout in Manjil, Iran. The optimization procedure aims to find the optimal arrangement of this wind farm and the best values for the hubs of its wind turbines. By considering wind regimes and geographic data of the considered area, and using the Jensen’s method, the wind turbine wake effect of the proposed configuration is simulated. The objective function in the optimization problem is set in such a way to find the optimal arrangement of the wind turbines as well as electricity generation costs, based on the Mossetti cost function, by implementing the particle swarm optimization (PSO) algorithm. The results reveal that optimizing the given wind farm leads to a 10.75% increase in power generation capacity and a 9.42% reduction in its corresponding cost.

Author(s):  
Anh Tuan Doan ◽  
Dinh Thanh Viet ◽  
Minh Quan Duong

In this paper, economic load dispatch (ELD) problem is solved by applying a suggested improved particle swarm optimization (IPSO) for reaching the lowest total power generation cost from wind farms (WFs) and thermal units (TUs). The suggested IPSO is the modified version of Particle swarm optimization (PSO) by changing velocity and position updates. The five best solutions are employed to replace the so-far best position of each particle in velocity update mechanism and the five best solutions are used to replace previous position of each particle in position update. In addition, constriction factor is also used in the suggested IPSO. PSO, constriction factor-based PSO (CFPSO) and bat optimization algorithm (BOA) are also run for comparisons. Two systems are used to run the four methods. The first system is comprised of nine TUs with multiple fuels and one wind farm. The second system is comprised of eight TUs with multiple fuels and two WFs. From the comparisons of results, IPSO is much more powerful than three others and it can find optimal power generation with the lowest total power generation cost.


2020 ◽  
Vol 48 (4) ◽  
pp. 922-930
Author(s):  
Shafiqur Rehman ◽  
Salman Khan ◽  
Luai Alhems

Wind energy has become a strong alternative to traditional sources of energy. One important decision for an efficient wind farm is the optimal layout design. This layout governs the placement of turbines in a wind farm. The inherent complexity involved in this process results in the wind farm layout design problem to be a complex optimization problem. Particle Swarm Optimization (PSO) algorithm has been effectively used in many studies to solve the wind farm layout design problem. However, the impact of an important set of PSO parameters, namely, the acceleration coefficients, has not received due attention. Considering the importance of these parameters, this paper presents a preliminary analysis of PSO acceleration coefficients using the conventional and a modified variant of PSO when applied to wind farm layout design. Empirical results show that the acceleration coefficients do have an impact on the quality of final layout, resulting in better overall energy output.


Sign in / Sign up

Export Citation Format

Share Document