scholarly journals A Bipolar Voltage Gain Boost AC-AC Converter Based on Four Switching Transistors

2021 ◽  
Vol 11 (21) ◽  
pp. 10254
Author(s):  
Naveed Ashraf ◽  
Ghulam Abbas ◽  
Nasim Ullah ◽  
Sattam Al Otaibi ◽  
Ahmed Althobaiti ◽  
...  

In numerous applications, such as the correction of grid voltage during voltage sag or swell events caused by system faults, it is necessary to ensure the stabilization of the output voltage with in-phase and out-phase features. This feature can also be employed in high-voltage-gain AC to DC conversion. AC voltage control schemes with one-stage conversion are viable approaches in this regard as only voltage regulation is needed. This conversion approach has strong potential for such applications as it is simple to realize. The voltage-correcting compensators are connected in series with the lines. The inputs of the AC voltage controllers employed in the voltage-correcting compensators may be connected to the faulty phase or other healthy phases. The number of AC voltage controllers used in a voltage compensator are one and two if its input power is drawn from the faulty and non-faulty phases, respectively. In the latter case, voltage gains and phase adjustment are major problems. There is no such issue in the first approach, where the voltage-correcting controller is connected to the line where the voltage variation is to be corrected. A high voltage gain more than the unity of both voltage polarities is required if the depth level of the correcting voltage is around 50% or more. The size and cost of a voltage-correcting controller depend on the number of switching transistors, as an isolated DC source with a gate-controlling circuit is a mandatory requirement for the switching operation of each transistor. Therefore, in the suggested research, an AC voltage controller having bipolar voltage gain is realized only with four switching transistors and six diodes, which reduces the overall size and cost significantly. The verification of the suggested topology is ensured by obtaining the simulation and real results from Simulink-based and practical-based platforms, respectively.

Author(s):  
Zhengzhao He ◽  
Tiejiang Yuan ◽  
Wenping Cao ◽  
Zhengyu Lin

A modular switched-capacitor (SC) DC-DC converter (MSCC) is introduced in this paper. It is designed to boost a low input voltage to a high voltage level and can be applied for photovoltaics and electric vehicles. This topology has high extensibility for high voltage gain output. The merits of the converters also lie in the fault tolerance operation and the voltage regulation with a minimum change in the duty ratio. Those features are built in when designing the modules and then integrating these into the DC-DC converter. Converter performance including voltage gain, voltage and current stress are focused and tested. The converter is modelled analytically, and its control algorithm is analyzed in detailed. Both simulation and experiment are carried out to verify the topology under normal operation and fault mode operation.


2021 ◽  
Vol 1964 (5) ◽  
pp. 052016
Author(s):  
L. Annie Isabella ◽  
Y. Alexander Jeevanantham ◽  
Chandla Ellis ◽  
R. Kameshwaran

Author(s):  
Jagabar Sathik Mohamed Ali ◽  
Marif Daula Siddique ◽  
Saad Mekhilef ◽  
Yongheng Yang ◽  
Yam Siwakoti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document