scholarly journals Anisotropic Shear Strength Behavior of Soil–Geogrid Interfaces

2021 ◽  
Vol 11 (23) ◽  
pp. 11387
Author(s):  
Jun Zhang ◽  
Mingchang Ji ◽  
Yafei Jia ◽  
Chenxi Miao ◽  
Cheng Wang ◽  
...  

This paper presents an experimental study on the anisotropic shear strength behavior of soil–geogrid interfaces. A new type of interface shear test device was developed, and a series of soil–geogrid interface shear tests were conducted for three different biaxial geogrids and three different triaxial geogrids under the shear directions of 0°, 45° and 90°. Clean fine sand, coarse sand, and gravel were selected as the testing materials to investigate the influence of particle size. The experimental results for the interface shear strength behavior, and the influences of shear direction and particle size are presented and discussed. The results indicate that the interface shear strength under the same normal stress varies with shear direction for all the biaxial and triaxial geogrids investigated, which shows anisotropic shear strength behavior of soil–geogrid interfaces. The soil–biaxial geogrid interfaces show stronger anisotropy than that of the soil–triaxial geogrid interfaces under different shear directions. Particle size has a great influence on the anisotropy shear strength behavior of soil–geogrid interfaces.

Recent surface sediments from the continental shelf in the vicinity of the Howick Group have been analysed to determine their textural, chemical and skeletal composition. There is a decrease in terrigenous particle size from quartz sand in the nearshore area to mud offshore. Carbonate particle size decreases from gravel to mud moving away from the reef. Multivariate statistical analysis of grain size data has determined the influence of various sources. Q-mode cluster and factor analysis distinguished four sediment types and indicated that three factors are responsible for 94 % of the textural variation. R-mode cluster analysis showed three distinct size populations. They result from intermixing of material from different sources and do not necessarily reflect distinct modes of transportation. The distribution of the textural sediment types displays concentric elliptical patterns around each platform reef in a zone approximately 2 km wide, within which there is a size gradient from coarse sand and gravel near the windward reef edge to fine sand near the leeward margin.


1987 ◽  
Vol 20 (8) ◽  
pp. 824
Author(s):  
J.E. Bechtold ◽  
Y. Dohmae ◽  
R.E. Sherman ◽  
R.B. Gustilo

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Karl Niklas Hansson ◽  
Stig Hansson

The surface roughness affects the bone response to dental implants. A primary aim of the roughness is to increase the bone-implant interface shear strength. Surface roughness is generally characterized by means of surface roughness parameters. It was demonstrated that the normally used parameters cannot discriminate between surfaces expected to give a high interface shear strength from surfaces expected to give a low interface shear strength. It was further demonstrated that the skewness parameter can do this discrimination. A problem with this parameter is that it is sensitive to isolated peaks and valleys. Another roughness parameter which on theoretical grounds can be supposed to give valuable information on the quality of a rough surface is kurtosis. This parameter is also sensitive to isolated peaks and valleys. An implant surface was assumed to have a fairly well-defined and homogenous “semiperiodic” surface roughness upon which isolated peaks were superimposed. In a computerized simulation, it was demonstrated that by using small sampling lengths during measurement, it should be possible to get accurate values of the skewness and kurtosis parameters.


Sign in / Sign up

Export Citation Format

Share Document