scholarly journals A Mini-Survey and Feasibility Study of Deep-Learning-Based Human Activity Recognition from Slight Feature Signals Obtained Using Privacy-Aware Environmental Sensors

2021 ◽  
Vol 11 (24) ◽  
pp. 11807
Author(s):  
Hirokazu Madokoro ◽  
Stephanie Nix ◽  
Hanwool Woo ◽  
Kazuhito Sato

Numerous methods and applications have been proposed in human activity recognition (HAR). This paper presents a mini-survey of recent HAR studies and our originally developed benchmark datasets of two types using environmental sensors. For the first dataset, we specifically examine human pose estimation and slight motion recognition related to activities of daily living (ADL). Our proposed method employs OpenPose. It describes feature vectors without effects of objects or scene features, but with a convolutional neural network (CNN) with the VGG-16 backbone, which recognizes behavior patterns after classifying the obtained images into learning and verification subsets. The first dataset comprises time-series panoramic images obtained using a fisheye lens monocular camera with a wide field of view. We attempted to recognize five behavior patterns: eating, reading, operating a smartphone, operating a laptop computer, and sitting. Even when using panoramic images including distortions, results demonstrate the capability of recognizing properties and characteristics of slight motions and pose-based behavioral patterns. The second dataset was obtained using five environmental sensors: a thermopile sensor, a CO2 sensor, and air pressure, humidity, and temperature sensors. Our proposed sensor system obviates the need for constraint; it also preserves each subject’s privacy. Using a long short-term memory (LSTM) network combined with CNN, which is a deep-learning model dealing with time-series features, we recognized eight behavior patterns: eating, operating a laptop computer, operating a smartphone, playing a game, reading, exiting, taking a nap, and sitting. The recognition accuracy for the second dataset was lower than for the first dataset consisting of images, but we demonstrated recognition of behavior patterns from time-series of weak sensor signals. The recognition results for the first dataset, after accuracy evaluation, can be reused for automatically annotated labels applied to the second dataset. Our proposed method actualizes semi-automatic annotation, false recognized category detection, and sensor calibration. Feasibility study results show the new possibility of HAR used for ADL based on unique sensors of two types.

2021 ◽  
pp. 129-159
Author(s):  
Mahbuba Tasmin ◽  
Sharif Uddin Ruman ◽  
Taoseef Ishtiak ◽  
Arif-ur-Rahman Chowdhury Suhan ◽  
Redwan Hasif ◽  
...  

Author(s):  
Luay Alawneh ◽  
Tamam Alsarhan ◽  
Mohammad Al-Zinati ◽  
Mahmoud Al-Ayyoub ◽  
Yaser Jararweh ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2760
Author(s):  
Seungmin Oh ◽  
Akm Ashiquzzaman ◽  
Dongsu Lee ◽  
Yeonggwang Kim ◽  
Jinsul Kim

In recent years, various studies have begun to use deep learning models to conduct research in the field of human activity recognition (HAR). However, there has been a severe lag in the absolute development of such models since training deep learning models require a lot of labeled data. In fields such as HAR, it is difficult to collect data and there are high costs and efforts involved in manual labeling. The existing methods rely heavily on manual data collection and proper labeling of the data, which is done by human administrators. This often results in the data gathering process often being slow and prone to human-biased labeling. To address these problems, we proposed a new solution for the existing data gathering methods by reducing the labeling tasks conducted on new data based by using the data learned through the semi-supervised active transfer learning method. This method achieved 95.9% performance while also reducing labeling compared to the random sampling or active transfer learning methods.


Sign in / Sign up

Export Citation Format

Share Document