scholarly journals Features of Acoustic Emission in Tensile Testing of Dissimilar Welded Joints of Pearlitic and Austenitic Steels

2021 ◽  
Vol 11 (24) ◽  
pp. 11892
Author(s):  
Vera Barat ◽  
Artem Marchenkov ◽  
Vladimir Bardakov ◽  
Marina Karpova ◽  
Daria Zhgut ◽  
...  

This paper presents a study of acoustic emission (AE) during the deformation of dissimilar welded joints of austenitic steel to pearlitic steel. One of the specific problems in these welded joints is the presence of decarburized and carbide diffusion interlayers, which intensively increase in width during long-term high-temperature operation. The presence of wide interlayers negatively affects the mechanical properties of welded joints. Moreover, welded defects are difficult to diagnose in welded joints containing interlayers: due to the high structural heterogeneity, interlayers create structural noises that can hinder the detection of defects such as cracks, pores, or a lack of penetration. The AE method may become a complex decision for diagnosing dissimilar welded joints due to applicability to the testing of heterogenic materials with a complex microstructure. Specimens cut from dissimilar welded joints of austenitic steel to pearlitic steel were tested by tension to rupture, with parallel AE data registration. According to the research results, the characteristic features of the AE were revealed for specimens containing defects in the form of lack of penetration as well as for specimens with diffusion interlayers. The results obtained show that the AE method can be used to test both typical welding defects and diffusion interlayers in welded joints of steels of different structural classes.

2015 ◽  
Vol 60 (3) ◽  
pp. 1807-1812
Author(s):  
M. Stolecki ◽  
H. Bijok ◽  
Ł. Kowal ◽  
J. Adamiec

Abstract This paper describes the technology of welding of finned tubes made of the X5CrNi1810 (1.4301) austenitic steel, developed at Energoinstal SA, allowing one to get high quality joints that meet the requirements of the classification societies (PN-EN 15614), and at the same time to significantly reduce the manufacturing costs. The authors described an automatic technological line equipped with a Trumph disc laser and a tube production technological process. To assess the quality of the joints, one performed metallographic examinations, hardness measurements and a technological attempt to rupture the fin. Analysis of the results proved that the laser-welded finned tubes were performed correctly and that the welded joints had shown no imperfections.


Vestnik MEI ◽  
2017 ◽  
pp. 96-101
Author(s):  
Viktor V. Nosov ◽  
◽  
Alsu R. Yamilova ◽  
Nikolay A. Zelenskiy ◽  
Ilya V. Matviyan ◽  
...  

2021 ◽  
Vol 827 ◽  
pp. 142066
Author(s):  
R. Lehnert ◽  
A. Franke ◽  
H. Biermann ◽  
A. Weidner

2021 ◽  
Vol 57 (7) ◽  
pp. 570-578
Author(s):  
A. V. Gonchar ◽  
V. A. Klyushnikov ◽  
V. V. Mishakin ◽  
M. S. Anosov

Author(s):  
A. Rastegaev ◽  
M. L. Linderov ◽  
D. L. Merson ◽  
M. A. Afanasyev ◽  
A. V. Danyuk

Author(s):  
Denghong Xiao ◽  
Tian He ◽  
Xiandong Liu ◽  
Yingchun Shan

A novel approach of locating damage in welded joints is proposed based on acoustic emission (AE) beamforming, which is particularly applicable to complex plate-like structures. First, five AE sensors used to obtain AE signals generated from damage are distributed on the surface of the structure in a uniform line array. Then the beamforming method is adopted to detect the weld joints in the area of interest rather than all the points of the whole structure, and to determine the location and obtain information of AE sources. In order to study the ability of the proposed method more comprehensively, a rectangular steel tube with welded joints is taken for the pencil-lead-broken test. The localization results indicate that the proposed localization approach can effectively localize the failure welded joints. This improvement greatly reduces the cost of computation and also improves the efficiency of localization work compared with the traditional beamforming.


Sign in / Sign up

Export Citation Format

Share Document