scholarly journals The Influence of Electrolyte Flow Hydrodynamics on the Performance of a Microfluidic Dye-Sensitized Solar Cell

2021 ◽  
Vol 11 (24) ◽  
pp. 12090
Author(s):  
Roman G. Szafran ◽  
Mikita Davykoza

The dye-sensitized solar cells microfluidically integrated with a redox flow battery (µDSSC-RFB) belong to a new emerging class of green energy sources with an inherent opportunity for energy storage. The successful engineering of microfluidically linked systems is, however, a challenging subject, as the hydrodynamics of electrolyte flow influences the electron and species transport in the system in several ways. In the article, we have analyzed the microflows hydrodynamics by means of the lattice-Boltzmann method, using the algebraic solution of the Navier-Stokes equation for a duct flow and experimentally by the micro particle image velocimetry method. Several prototypes of µDSSC were prepared and tested under different flow conditions. The efficiency of serpentine µDSSC raised from 2.8% for stationary conditions to 3.1% for electrolyte flow above 20 mL/h, while the fill factor increased about 13% and open-circuit voltage from an initial 0.715 V to 0.745 V. Although the hexagonal or circular configurations are the straightforward extensions of standard photo chambers of solar cells, those configurations are hydrodynamically less predictable and unfavorable due to large velocity gradients. The serpentine channel configuration with silver fingers would allow for the scaling of the µDSSC-RFB systems to the industrial scale without loss of performance. Furthermore, the deterioration of cell performance over time can be inhibited by the periodic sensitizer regeneration, which is the inherent advantage of µDSSC.

foresight ◽  
2014 ◽  
Vol 16 (3) ◽  
pp. 229-249 ◽  
Author(s):  
James K.C. Chen ◽  
Van Kien Pham

Purpose – The purpose of this paper is to determine the development and knowledge flows of dye-sensitized solar cells (DSSCs) via the use of patent inventor database. Moreover, this study aims to explore patentees and inventors’ companies to help readers and practitioners to be able to understand the patentees, technology development and activities of knowledge flows from four countries. DSSCs, which are known as one of the key technologies of green energy, have been applied ever more widely to many different industries, and their use has quickly grown with a number of scientific publications and patent applications. Design/methodology/approach – This paper was based on the US patent database collection of third-generation DSSCs in four typical countries such as USA, Japan, Germany and Taiwan to map the knowledge network of DSSC technology via the social network analysis method. Findings – The knowledge network of 132 DSSC patents was explored. Among the four countries, Japan leads, with the main patent number being H01G009. This paper also indicates the knowledge flow situation of Japanese inventors of DSSCs. For example, patented inventors Wariishi and Koji (JP) served the Fuji Photo Film Co., Ltd. (JP) in 2002, and then in 2008, transferred to the Fuji Film Corporation (JP). This means that the knowledge of technology was transferred by people who moved to another company for a new job. Research limitations/implications – This study is based on US Patent and Trademark Office patent database to do exploration. Practical implications – This study was expected to provide information for the industry, government and academia, so that they will understand the trajectory of the technology inventor, specialist cultivation and technology development in the DSSC industry. Originality/value – This study provides useful information for the green energy industry, government and academia to understand the importance of the knowledge flows and future development of DSSC technology of the solar cell industry. Thereby, they can intensify industrial competence and innovation by externally collaborating in this field as well as to increase the industrial competence by reimbursing the funds from government and other research institutes.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3741
Author(s):  
Fabian Schoden ◽  
Marius Dotter ◽  
Dörthe Knefelkamp ◽  
Tomasz Blachowicz ◽  
Eva Schwenzfeier-Hellkamp

In times of climate change and dwindling fossil resources, the need for sustainable renewable energy technologies gains importance, increasingly fast. However, the state of the art technologies are energy intensive in their production, like monocrystalline photovoltaic, or even consist of not recyclable composite material, in the case of wind turbine blades. Despite a lack in efficiency and stability, dye sensitized solar cells (DSSC) have a high potential to supplement the state of the art green energy technology in future. With low production costs and no necessity for toxic compounds DSSCs are a potential product, which could circulate in the loops of a circular economy. Therefore, with this paper, we provide the status of research on DSSC recycling and an outlook on how recycling streams could be realized in the future for glass-based DSSCs without toxic components. The overview includes work on using recycled material to build DSSCs and extending the life of a DSSC, e.g., through rehydration. We also illustrate the state of sustainability research for DSSCs using the VOSviewer tool. To date, the term sustainability appears in 35 of 24,441 publications on DSSCs. In view of the global challenges, sustainability should be researched more seriously because it is as important as the efficiency and stability of DSSCs.


Author(s):  
Jinchu I ◽  
Jyothi R ◽  
N Pandurangan ◽  
Sreelatha KS ◽  
Krishnashree Achuthan ◽  
...  

<p>Natural dye sensitized solar cells are a promising class of photovoltaic cells with the capacity of generating green energy at low production cost since no expensive equipment is required in their fabrication. Photovoltaics are a precious technology in the hasty world where energy prices are goes on increasing within seconds. Researchers are focusing to facilitate for producing eco-friendly, low cost and more efficient dye sensitized solar cells. In the present work we discuss the comparative photovoltaic studies of Lawsone, a natural dye from henna plant and Alizarin, a natural dye from the root of madder for fabricating the Dye sensitized solar cells (DSSCs). The absorption spectrum of Lawsone and Alizarin is found to be shifted to the longer wavelength region after the complex formation. As a result there is a significant increase in short circuit current density and conversion efficiency. This result compares with the standard dye i.e. N719 dye.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Khalil Ebrahim Jasim ◽  
Shawqi Al-Dallal ◽  
Awatif M. Hassan

Low-cost solar cells have been the subject of intensive research activities for over half century ago. More recently, dye-sensitized solar cells (DSSCs) emerged as a new class of low-cost solar cells that can be easily prepared. Natural-dye-sensitized solar cells (NDSSCs) are shown to be excellent examples of mimicking photosynthesis. The NDSSC acts as a green energy generator in which dyes molecules adsorbed to nanocrystalline layer of wide bandgap semiconductor material harvest photons. In this paper we investigate the structural, optical, electrical, and photovoltaic characterization of two types of natural dyes, namely, the Bahraini Henna and the Yemeni Henna, extracted using the Soxhlet extractor. Solar cells from both materials were prepared and characterized. It was found that the levels of open-circuit voltage and short-circuit current are concentration dependent. Further suggestions to improve the efficiency of NDSSC are discussed.


Author(s):  
Jinchu I ◽  
Jyothi R ◽  
N Pandurangan ◽  
Sreelatha KS ◽  
Krishnashree Achuthan ◽  
...  

<p>Natural dye sensitized solar cells are a promising class of photovoltaic cells with the capacity of generating green energy at low production cost since no expensive equipment is required in their fabrication. Photovoltaics are a precious technology in the hasty world where energy prices are goes on increasing within seconds. Researchers are focusing to facilitate for producing eco-friendly, low cost and more efficient dye sensitized solar cells. In the present work we discuss the comparative photovoltaic studies of Lawsone, a natural dye from henna plant and Alizarin, a natural dye from the root of madder for fabricating the Dye sensitized solar cells (DSSCs). The absorption spectrum of Lawsone and Alizarin is found to be shifted to the longer wavelength region after the complex formation. As a result there is a significant increase in short circuit current density and conversion efficiency. This result compares with the standard dye i.e. N719 dye.</p>


2010 ◽  
Vol 130 (2) ◽  
pp. 136-140 ◽  
Author(s):  
Shoji Furukawa ◽  
Hiroshi Iino ◽  
Koudai Kukita ◽  
Kaoru Kaminosono

Sign in / Sign up

Export Citation Format

Share Document