scholarly journals Anthraquinones- A probe to enhance the photovoltaic properties of DSSCs

Author(s):  
Jinchu I ◽  
Jyothi R ◽  
N Pandurangan ◽  
Sreelatha KS ◽  
Krishnashree Achuthan ◽  
...  

<p>Natural dye sensitized solar cells are a promising class of photovoltaic cells with the capacity of generating green energy at low production cost since no expensive equipment is required in their fabrication. Photovoltaics are a precious technology in the hasty world where energy prices are goes on increasing within seconds. Researchers are focusing to facilitate for producing eco-friendly, low cost and more efficient dye sensitized solar cells. In the present work we discuss the comparative photovoltaic studies of Lawsone, a natural dye from henna plant and Alizarin, a natural dye from the root of madder for fabricating the Dye sensitized solar cells (DSSCs). The absorption spectrum of Lawsone and Alizarin is found to be shifted to the longer wavelength region after the complex formation. As a result there is a significant increase in short circuit current density and conversion efficiency. This result compares with the standard dye i.e. N719 dye.</p>

Author(s):  
Jinchu I ◽  
Jyothi R ◽  
N Pandurangan ◽  
Sreelatha KS ◽  
Krishnashree Achuthan ◽  
...  

<p>Natural dye sensitized solar cells are a promising class of photovoltaic cells with the capacity of generating green energy at low production cost since no expensive equipment is required in their fabrication. Photovoltaics are a precious technology in the hasty world where energy prices are goes on increasing within seconds. Researchers are focusing to facilitate for producing eco-friendly, low cost and more efficient dye sensitized solar cells. In the present work we discuss the comparative photovoltaic studies of Lawsone, a natural dye from henna plant and Alizarin, a natural dye from the root of madder for fabricating the Dye sensitized solar cells (DSSCs). The absorption spectrum of Lawsone and Alizarin is found to be shifted to the longer wavelength region after the complex formation. As a result there is a significant increase in short circuit current density and conversion efficiency. This result compares with the standard dye i.e. N719 dye.</p>


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Kambiz Hosseinpanahi ◽  
Mohammad Hossein Abbaspour-Fard ◽  
Javad Feizy ◽  
Mahmood Reza Golzarian

Natural dye extract of the saffron petal, purified by solid-phase extraction (SPE) technique, has been studied as a novel sensitizing dye to fabricate TiO2 nanoparticles-based dye-sensitized solar cells (DSSC). The extract was characterized using ultraviolet–visible (UV–Vis) and Fourier transform infrared (FTIR) spectroscopies to confirm the presence of anthocyanins in saffron petals. The typical current–voltage and the incident photon to current efficiency (IPCE) curves were also provided for the fabricated cell. The saffron petal extract exhibited an open-circuit voltage (Voc) of 0.397 V, short circuit current density (Jsc) of 2.32 mA/cm2, fill factor (FF) of 0.71, and conversion efficiency of 0.66%, which are fairly good in comparison with the other similar natural dye-sensitized solar cells. These are mainly due to the improved charge transfer between the dye extract of saffron petal and the TiO2 anode surface. Considering these results, it can be concluded that the use of saffron petal dye as a sensitizer in DSSC is a promising method for providing clean energy from performance, environmental friendliness, and cost points of view.


2011 ◽  
Vol 306-307 ◽  
pp. 112-115 ◽  
Author(s):  
You Zeng ◽  
Li Jia Zhao ◽  
Ying Zhen ◽  
Fang Xiao Shi ◽  
Yu Tong

Flexible dye-sensitized solar cells (DSCs) were prepared by using carbon nanotube transparent conductive films (CNT-TCFs) as flexible substrates, and their photovoltaic properties were investigated as well. The flexible DSCs show typical photovoltaic characteristics with short-circuit current of 0.78 μA and open-circuit voltage of 1.48 mV, which was strongly influenced by heat-treatment temperature, type of dyes, and electrical resistivity. In light of their lighter weight and higher flexibility than conventional DSCs based on conductive glass substrates, the flexible DSCs have great potential as functional photoelectric components in many fields.


2010 ◽  
Vol 1270 ◽  
Author(s):  
Xu Wang ◽  
Haiyou Yin ◽  
Bao Wang ◽  
Lifeng Liu ◽  
Yi Wang ◽  
...  

AbstractA novel ZnO/TiO2 assorted photoelectrode for dye-sensitized solar cells (DSSCs) is proposed. The impacts of the ZnO/TiO2 assorted photoelectrode on the photovoltaic performance of dye-sensitized solar cells (DSSCs) were investigated. The measurements of the light transmission spectra showed the higher transmittance through ZnO/FTO than through FTO during the effective wavelength region of 536nm˜800nm for DSSCs, indicating that ZnO/TiO2 assorted photoelectrode is beneficial for the photovoltaic performance of DSSCs. The measurements on the photovoltaic characteristics of the DSSC cell indicate that the inserted ZnO layer can cause the increased open circuit voltage (Voc) more than 70 mV and fill factor (FF) but the decreased short circuit current. The enhanced Voc and FF could be attributed to the suppressed the recombination of photon-generated carriers between the ZnO/TiO2 assorted photoelectrode and electrolyte (dye) compared to TiO2 photoelectrode. However, the additional series resistance of inserted ZnO layer causes the reduced short circuit current. The optimized conversion efficiency can be achieved in the DSSC with ZnO/TiO2 assorted photoelectrode by using low series resistance of ZnO layer.


2007 ◽  
Vol 1013 ◽  
Author(s):  
Kinji Onoda ◽  
Supachai Ngamsinlapasathian ◽  
Takuya Fujieda ◽  
Susumu Yoshikawa

AbstractThe photovoltaic properties of dye-sensitized solar cells (DSCs) based on fluorine doped tin oxide (FTO) and Ti substrates were investigated. The sheet resistances of the substrates were correlated to the photovoltaic properties. The efficiency of the Ti substrate based DSC was higher than that of the FTO substrate based DSC, due to a high fill factor (FF). To minimize the internal resistance of the DSCs, Ti plate was used as a support for nanocrystalline TiO2, because of its low sheet resistance. As the light was absorbed by the electrolyte layer, the incident photon to current efficiency (IPCE) values decreased in the range between 400-600 nm. The electrolyte concentrations were optimized to obtain a higher cell performance. When using an electrolyte composed of 0.02 M I2, 0.2 M LiI, and 0.5 M 4-tert-butylpyridine, an efficiency of 4.98% was obtained for the Ti substrate based DSC with a short circuit current density (Jsc) of 11.25 mAcm-2, an open circuit voltage (Voc) of 0.692 V, and a FF of 0.639. The effect of the cell size on the photovoltaic properties was also investigated. The rate of decrease in a FF and efficiency with increase in the cell size was lower for the Ti substrate based DSCs than the FTO substrate based DSCs. This result indicates that Ti plate is a potential candidate for production of large DSCs.


2021 ◽  
Vol 15 (1) ◽  
pp. 58
Author(s):  
Najihah M.Z. ◽  
Winie Tan

Current work employs dye extracted from leaves of Costus woodsonii as a new sensitizer for dye-sensitized solar cells (DSSCs). The leave was extracted in three different solvents namely ethanol, methanol, and acetone. Extraction of leaves was carried out by the freezing method. DSSCs with the configuration of TiO2/dye/electrolyte/Pt were assembled. The dyes in DSSCs were Costus woodsonii leaves extracted in methanol, ethanol, and acetone. DSSC with methanol extract of leaves has an efficiency of 0.23 % and short-circuit current density (Jsc) of 0.63 mA cm-2.  DSSC sensitized with ethanol extract of leaves has an efficiency of 0.37 % and Jsc of 0.85 mA cm-2. DSSC sensitized with acetone extract of leaves shows the highest efficiency of 0.48 % and Jsc of 1.35 mA cm-2. The performance of the DSSCs in this work is compared with other natural dye-based DSSCs. The efficiency obtained in this work is better or at par with the works reported by other researchers. Keywords: Natural dye; Costus woodsonii; Leave; Dye-sensitized solar cells


2012 ◽  
Vol 85 (2) ◽  
pp. 417-425 ◽  
Author(s):  
Xiao Wang ◽  
Feng Hao ◽  
Huiyuan Chen ◽  
Gang Wang ◽  
Jianbao Li ◽  
...  

Single-crystalline anatase TiO2 nanorods (TiO2-SANRs) were synthesized through a facile solvothermal method and successfully applied as the photoanodes for efficient dye-sensitized solar cells (DSCs). The prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The power conversion efficiencies of TiO2-SANRs decorated Degussa P25 nanoparticle solar cells increased by 13.5 % compared with commercial Degussa P25 TiO2 solar cells under standard illumination conditions (AM 1.5G, 100 mW/cm–2). The improved performance of the TiO2-SANRs decorated Degussa P25 nanoparticle solar cells was primarily ascribed to the enhanced short-circuit photocurrent density (Jsc) despite a declined dye-loading capacity. The light-scattering effect in the long-wavelength region, as evidenced from the incident photon-to-current conversion efficiency (IPCE) response and the diffuse reflectance spectroscopy was recognized as the main reason for the photocurrent enrichment.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Khalil Ebrahim Jasim ◽  
Shawqi Al-Dallal ◽  
Awatif M. Hassan

Low-cost solar cells have been the subject of intensive research activities for over half century ago. More recently, dye-sensitized solar cells (DSSCs) emerged as a new class of low-cost solar cells that can be easily prepared. Natural-dye-sensitized solar cells (NDSSCs) are shown to be excellent examples of mimicking photosynthesis. The NDSSC acts as a green energy generator in which dyes molecules adsorbed to nanocrystalline layer of wide bandgap semiconductor material harvest photons. In this paper we investigate the structural, optical, electrical, and photovoltaic characterization of two types of natural dyes, namely, the Bahraini Henna and the Yemeni Henna, extracted using the Soxhlet extractor. Solar cells from both materials were prepared and characterized. It was found that the levels of open-circuit voltage and short-circuit current are concentration dependent. Further suggestions to improve the efficiency of NDSSC are discussed.


Sign in / Sign up

Export Citation Format

Share Document