scholarly journals Optimized Design of Thermoelectric Energy Harvesting Systems for Waste Heat Recovery from Exhaust Pipes

2017 ◽  
Vol 7 (6) ◽  
pp. 634 ◽  
Author(s):  
Marco Nesarajah ◽  
Georg Frey
Author(s):  
Hal Edwards ◽  
Jeff Debord ◽  
Toan Tran ◽  
Dave Freeman ◽  
Kenneth Maggio

This chapter presents a study of thermoelectric energy harvesting with nano-sized thermopiles (nTE) in a planar 65 nm silicon CMOS process. These devices generated power from a 5C temperature difference at a density comparable to commercially available thermoelectric generators, following a metric used in the research literature (Hudak, 2008). By analyzing these devices as a thermoelectric harvesting system, the authors explore the impact of additional performance metrics such as heat source/sink thermal impedance, available heat flow density, and voltage stacking, providing a more comprehensive set of criteria for evaluating the suitability of a thermal harvesting technology. The authors use their thermoelectric system theory to consider the prospects for several thermoelectric energy harvesting applications.


2017 ◽  
Vol 1 (9) ◽  
pp. 1899-1908 ◽  
Author(s):  
Ravi Anant Kishore ◽  
Shashank Priya

This study demonstrates a novel thermal energy harvesting cycle and provides pathway for low-grade waste heat recovery using magnetocaloric materials.


2021 ◽  
pp. 1-19
Author(s):  
Srinath Somu ◽  
Deanna A. Lacoste ◽  
Saumitra Saxena ◽  
William Roberts ◽  
Robert M. Keolian

Abstract Waste heat recovery from power plants and industries requires a new type of electricity generator and related technological developments. The current research work is aimed at the design of a multi-kilowatt thermoacoustic electric generator, which can be employed as the bottoming cycle of a gas-turbine power plant or for industrial waste heat recovery. The proposed device converts thermal energy into acoustic power and subsequently uses a piezoelectric alternator to convert acoustic power into electricity. The challenge in designing such a device is that it has to be acoustically balanced. The performance of the device is greatly affected by numerous parameters such as frequency of the traveling acoustic wave, heat exchanger parameters, regenerator dimensions, acoustic feedback loop, etc. The proposed device is a lab-scale demonstration targeted to produce few kilowatts of electric power from a 20 kWth heat source. DeltaEC software is used to achieve the acoustically balanced configuration of the device. The DeltaEC model outcomes are used to arrive at the optimized design of the device and its components. The analytical method, the optimized geometrical dimensions of thermoacoustic components, and the minimum required conditions of heat source input are presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document