scholarly journals Temporal Action Detection in Untrimmed Videos from Fine to Coarse Granularity

2018 ◽  
Vol 8 (10) ◽  
pp. 1924 ◽  
Author(s):  
Guangle Yao ◽  
Tao Lei ◽  
Xianyuan Liu ◽  
Ping Jiang

Temporal action detection in long, untrimmed videos is an important yet challenging task that requires not only recognizing the categories of actions in videos, but also localizing the start and end times of each action. Recent years, artificial neural networks, such as Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) improve the performance significantly in various computer vision tasks, including action detection. In this paper, we make the most of different granular classifiers and propose to detect action from fine to coarse granularity, which is also in line with the people’s detection habits. Our action detection method is built in the ‘proposal then classification’ framework. We employ several neural network architectures as deep information extractor and segment-level (fine granular) and window-level (coarse granular) classifiers. Each of the proposal and classification steps is executed from the segment to window level. The experimental results show that our method not only achieves detection performance that is comparable to that of state-of-the-art methods, but also has a relatively balanced performance for different action categories.

2020 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
Dana-Mihaela Petroșanu ◽  
Alexandru Pîrjan

The accurate forecasting of the hourly month-ahead electricity consumption represents a very important aspect for non-household electricity consumers and system operators, and at the same time represents a key factor in what regards energy efficiency and achieving sustainable economic, business, and management operations. In this context, we have devised, developed, and validated within the paper an hourly month ahead electricity consumption forecasting method. This method is based on a bidirectional long-short-term memory (BiLSTM) artificial neural network (ANN) enhanced with a multiple simultaneously decreasing delays approach coupled with function fitting neural networks (FITNETs). The developed method targets the hourly month-ahead total electricity consumption at the level of a commercial center-type consumer and for the hourly month ahead consumption of its refrigerator storage room. The developed approach offers excellent forecasting results, highlighted by the validation stage’s results along with the registered performance metrics, namely 0.0495 for the root mean square error (RMSE) performance metric for the total hourly month-ahead electricity consumption and 0.0284 for the refrigerator storage room. We aimed for and managed to attain an hourly month-ahead consumed electricity prediction without experiencing a significant drop in the forecasting accuracy that usually tends to occur after the first two weeks, therefore achieving a reliable method that satisfies the contractor’s needs, being able to enhance his/her activity from the economic, business, and management perspectives. Even if the devised, developed, and validated forecasting solution for the hourly consumption targets a commercial center-type consumer, based on its accuracy, this solution can also represent a useful tool for other non-household electricity consumers due to its generalization capability.


Sign in / Sign up

Export Citation Format

Share Document