scholarly journals Deterministic and Probabilistic Wind Power Forecasting Based on Bi-Level Convolutional Neural Network and Particle Swarm Optimization

2019 ◽  
Vol 9 (9) ◽  
pp. 1794 ◽  
Author(s):  
Yang ◽  
Zhang ◽  
Yang ◽  
Lv

The intermittency and uncertainty of wind power result in challenges for large-scale wind power integration. Accurate wind power prediction is becoming increasingly important for power system planning and operation. In this paper, a probabilistic interval prediction method for wind power based on deep learning and particle swarm optimization (PSO) is proposed. Variational mode decomposition (VMD) and phase space reconstruction are used to pre-process the original wind power data to obtain additional details and uncover hidden information in the data. Subsequently, a bi-level convolutional neural network is used to learn nonlinear features in the pre-processed wind power data for wind power forecasting. PSO is used to determine the uncertainty of the point-based wind power prediction and to obtain the probabilistic prediction interval of the wind power. Wind power data from a Chinese wind farm and modeled wind power data provided by the United States Renewable Energy Laboratory are used to conduct extensive tests of the proposed method. The results show that the proposed method has competitive advantages for the point-based and probabilistic interval prediction of wind power.

2014 ◽  
Vol 543-547 ◽  
pp. 806-812 ◽  
Author(s):  
Ye Chen

The accuracy of short-term wind power forecast is important to the power system operation. Based on the real-time wind power data, a wind power prediction model using wavelet neural network is proposed. At the same time in order to overcome the disadvantages of the wavelet neural network for only use error reverse transmission as a fixed rule, this paper puts forward using Particle Swarm Optimization algorithm to replace the traditional gradient descent method training wavelet neural network. Through the analysis of the measured data of a wind farm, Shows that the forecasting method can improve the accuracy of the wind power prediction, so it has great practical value.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2873 ◽  
Author(s):  
Dinh Thanh Viet ◽  
Vo Van Phuong ◽  
Minh Quan Duong ◽  
Quoc Tuan Tran

As sources of conventional energy are alarmingly being depleted, leveraging renewable energy sources, especially wind power, has been increasingly important in the electricity market to meet growing global demands for energy. However, the uncertainty in weather factors can cause large errors in wind power forecasts, raising the cost of power reservation in the power system and significantly impacting ancillary services in the electricity market. In pursuance of a higher accuracy level in wind power forecasting, this paper proposes a double-optimization approach to developing a tool for forecasting wind power generation output in the short term, using two novel models that combine an artificial neural network with the particle swarm optimization algorithm and genetic algorithm. In these models, a first particle swarm optimization algorithm is used to adjust the neural network parameters to improve accuracy. Next, the genetic algorithm or another particle swarm optimization is applied to adjust the parameters of the first particle swarm optimization algorithm to enhance the accuracy of the forecasting results. The models were tested with actual data collected from the Tuy Phong wind power plant in Binh Thuan Province, Vietnam. The testing showed improved accuracy and that this model can be widely implemented at other wind farms.


Sign in / Sign up

Export Citation Format

Share Document