scholarly journals Wind Resource Assessment on Puná Island

2019 ◽  
Vol 9 (14) ◽  
pp. 2923
Author(s):  
Yuri Merizalde ◽  
Luis Hernández-Callejo ◽  
Javier Gracia Bernal ◽  
Enrique Telmo Martínez ◽  
Oscar Duque-Perez ◽  
...  

Puná Island, located in the Pacific Ocean off the southern coast of Ecuador, has a population of approximately 3344 inhabitants. However, not all inhabitants have access to electricity, which is largely supplied by diesel generators. Therefore, to identify a renewable, sustainable, environmentally friendly and low-cost alternative, a 40-m-high anemometer tower was installed for wind resource assessment and to determine the possibility of generating electricity from wind energy. Based on mathematical models for electricity generation from wind energy, data were analyzed using the software Windographer and WAsP, to determine a long-term wind speed of 4.8 m/s and a mean wind power density of 272 W/m2. By simulating the use of a 3.3-MW wind turbine, we demonstrated that as much as 800 kWh could be generated during the hours when the wind reaches its highest speed. In addition to demonstrating the technical feasibility of meeting the electricity demands of Puná Island through wind power, this study exemplifies a method that can be used for wind resource assessment in any location.

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3606
Author(s):  
José V. P. Miguel ◽  
Eliane A. Fadigas ◽  
Ildo L. Sauer

Driven by the energy auctions system, wind power in Brazil is undergoing a phase of expansion within its electric energy mix. Due to wind’s stochastic nature and variability, the wind measurement campaign duration of a wind farm project is required to last for a minimum of 36 months in order for it to partake in energy auctions. In this respect, the influence of such duration on a measure-correlate-predict (MCP) based wind resource assessment was studied to assess the accuracy of generation forecasts. For this purpose, three databases containing time series of wind speed belonging to a site were considered. Campaigns with durations varying from 2 to 6 years were simulated to evaluate the behavior of the uncertainty in the long-term wind resource and to analyze how it impacts a wind farm power output estimation. As the wind measurement campaign length is increased, the uncertainty in the long-term wind resource diminished, thereby reducing the overall uncertainty that pervades the wind power harnessing. Larger monitoring campaigns implied larger quantities of data, thus enabling a better assessment of wind speed variability within that target location. Consequently, the energy production estimation decreased, allowing an improvement in the accuracy of the energy generation prediction by not overestimating it, which could benefit the reliability of the Brazilian electric system.


Wind is a powerful and renewable source of energy that flows in every corner of the surface of the planet. As the world moves towards renewable and alternate energy sources, the potential of wind energy has been recognized and methods to use it to its maximum potential are being explored. India has been harnessing wind power over the years, but only lately, it has sent an ambitious target of achieving 60 gigawatts (GW) of wind installed capacity by 2022. The government has issued several tenders to invite private players or Independent Power Producers (IPPs) to develop wind energy projects. Many foreign investors and the Private Equity players have shown interest in investing in this growing renewable energy (RE) market in India. However, developing a wind project comes with lot many challenges as compared to any other RE project. These challenges range from land availability to seeking grid connectivity approvals and evacuation of the power. Along with this, the current reverse bidding process for the tariffs, have made the per unit tariffs to cost as low as INR 2.4. Hence, it is important to consider the technical and commercial feasibility of the project to function at these tariffs. This paper studies the current scenario of wind energy in the Indian market and analysis the potential for the development of wind projects. It also analyses the technical and commercial feasibility of the project by assuming a 300 MW project, having INR 2.5 as tariff, using Wind Resource Assessment (WRA) and Financial Model.


2015 ◽  
Vol 12 (1) ◽  
pp. 85-89 ◽  
Author(s):  
A. Giyanani ◽  
W. Bierbooms ◽  
G. van Bussel

Abstract. Remote sensing of the atmospheric variables with the use of Lidar is a relatively new technology field for wind resource assessment in wind energy. A review of the draft version of an international guideline (CD IEC 61400-12-1 Ed.2) used for wind energy purposes is performed and some extra atmospheric variables are taken into account for proper representation of the site. A measurement campaign with two Leosphere vertical scanning WindCube Lidars and metmast measurements is used for comparison of the uncertainty in wind speed measurements using the CD IEC 61400-12-1 Ed.2. The comparison revealed higher but realistic uncertainties. A simple model for Lidar beam averaging correction is demonstrated for understanding deviation in the measurements. It can be further applied for beam averaging uncertainty calculations in flat and complex terrain.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Matthew A. Lackner ◽  
Anthony L. Rogers ◽  
James F. Manwell

This paper presents a mathematical framework to properly account for uncertainty in wind resource assessment and wind energy production estimation. A meteorological tower based wind measurement campaign is considered exclusively, in which measure-correlate-predict is used to estimate the long-term wind resource. The evaluation of a wind resource and the subsequent estimation of the annual energy production (AEP) is a highly uncertain process. Uncertainty arises at all points in the process, from measuring the wind speed to the uncertainty in a power curve. A proper assessment of uncertainty is critical for judging the feasibility and risk of a potential wind energy development. The approach in this paper provides a framework for an accurate and objective accounting of uncertainty and, therefore, better decision making when assessing a potential wind energy site. It does not investigate the values of individual uncertainty sources. Three major aspects of site assessment uncertainty are presented here. First, a method is presented for combining uncertainty that arises in assessing the wind resource. Second, methods for handling uncertainty sources in wind turbine power output and energy losses are presented. Third, a new method for estimating the overall AEP uncertainty when using a Weibull distribution is presented. While it is commonly assumed that the uncertainty in the wind resource should be scaled by a factor between 2 and 3 to yield the uncertainty in the AEP, this work demonstrates that this assumption is an oversimplification and also presents a closed form solution for the sensitivity factors of the Weibull parameters.


2016 ◽  
Vol 41 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Djordje Romanic ◽  
Ashkan Rasouli ◽  
Horia Hangan

Urban wind resource assessment in changing climate has not been studied so far. This study presents a methodology for microscale numerical modelling of urban wind resource assessment in changing climate. The methodology is applied for a specific urban development in the city of Toronto, ON, Canada. It is shown that the speed of the southwest winds, that is, the most frequent winds increased for .8 m s−1 in the period from 1948 to 2015. The generated wind energy maps are used to estimate the influences of climate change on the available wind energy. It is shown that the geometry of irregularly spaced and located obstacles in urban environments has to be taken into consideration when performing studies on urban wind resource assessment in changing climate. In the analysed urban environment, peak speeds are more affected by climate change than the mean speeds.


Sign in / Sign up

Export Citation Format

Share Document