scholarly journals A Novel Combined Evolutionary Algorithm for Optimal Planning of Distributed Generators in Radial Distribution Systems

2019 ◽  
Vol 9 (16) ◽  
pp. 3394 ◽  
Author(s):  
Rabea Jamil Mahfoud ◽  
Yonghui Sun ◽  
Nizar Faisal Alkayem ◽  
Hassan Haes Alhelou ◽  
Pierluigi Siano ◽  
...  

In this paper, a novel, combined evolutionary algorithm for solving the optimal planning of distributed generators (OPDG) problem in radial distribution systems (RDSs) is proposed. This algorithm is developed by uniquely combining the original differential evolution algorithm (DE) with the search mechanism of Lévy flights (LF). Furthermore, the quasi-opposition based learning concept (QOBL) is applied to generate the initial population of the combined DELF. As a result, the new algorithm called the quasi-oppositional differential evolution Lévy flights algorithm (QODELFA) is presented. The proposed technique is utilized to solve the OPDG problem in RDSs by taking three objective functions (OFs) under consideration. Those OFs are the active power loss minimization, the voltage profile improvement, and the voltage stability enhancement. Different combinations of those three OFs are considered while satisfying several operational constraints. The robustness of the proposed QODELFA is tested and verified on the IEEE 33-bus, 69-bus, and 118-bus systems and the results are compared to other existing methods in the literature. The conducted comparisons show that the proposed algorithm outperforms many previous available methods and it is highly recommended as a robust and efficient technique for solving the OPDG problem.

2020 ◽  
Vol 10 (4) ◽  
pp. 1384
Author(s):  
Rabea Jamil Mahfoud ◽  
Nizar Faisal Alkayem ◽  
Yonghui Sun ◽  
Hassan Haes Alhelou ◽  
Pierluigi Siano ◽  
...  

In this paper, an improved hybridization of an evolutionary algorithm, named permutated oppositional differential evolution sine cosine algorithm (PODESCA) and also a sensitivity-based decision-making technique (SBDMT) are proposed to tackle the optimal planning of shunt capacitors (OPSC) problem in different-scale radial distribution systems (RDSs). The evolved PODESCA uniquely utilizes the mechanisms of differential evolution (DE) and an enhanced sine–cosine algorithm (SCA) to constitute the algorithm’s main structure. In addition, quasi-oppositional technique (QOT) is applied at the initialization stage to generate the initial population, and also inside the main loop. PODESCA is implemented to solve the OPSC problem, where the objective is to minimize the system’s total cost with the presence of capacitors subject to different operational constraints. Moreover, SBDMT is developed by using a multi-criteria decision-making (MCDM) approach; namely the technique for the order of preference by similarity to ideal solution (TOPSIS). By applying this approach, four sensitivity-based indices (SBIs) are set as inputs of TOPSIS, whereas the output is the highest potential buses for SC placement. Consequently, the OPSC problem’s search space is extensively and effectively reduced. Hence, based on the reduced search space, PODESCA is reimplemented on the OPSC problem, and the obtained results with and without reducing the search space by the proposed SBDMT are then compared. For further validation of the proposed methods, three RDSs are used, and then the results are compared with different methods from the literature. The performed comparisons demonstrate that the proposed methods overcome several previous methods and they are recommended as effective and robust techniques for solving the OPSC problem.


2018 ◽  
Vol 8 (9) ◽  
pp. 1623 ◽  
Author(s):  
Ke Li ◽  
Yeming Zhang ◽  
Shaoliang Wei ◽  
Hongwei Yue

The friction interference in the pneumatic rotary actuator is the primary factor affecting the position accuracy of a pneumatic rotary actuator servo system. The paper proposes an evolutionary algorithm-based friction-forward compensation control architecture for improving position accuracy. Firstly, the basic equations of the valve-controlled actuator are derived and linearized in the middle position, and the transfer function of the system is further obtained. Then, the evolutionary algorithm-based friction feedforward compensation control architecture is structured, including that the evolutionary algorithm is used to optimize the controller coefficients and identify the friction parameters. Finally, the contrast experiments of four control strategies (the traditional PD control, the PD control with friction feedforward compensation without evolutionary algorithm tuning, the PD control with friction feedforward compensation based on the differential evolution algorithm, and the PD control with friction feedforward compensation based on the genetic algorithm) are carried out on the experimental platform. The experimental results reveal that the evolutionary algorithm-based friction feedforward compensation greatly improves the position tracking accuracy and positioning accuracy, and that the differential evolution-based case achieves better accuracy. Also, the system with the friction feedforward compensation still maintains high accuracy and strong stability in the case of load.


Sign in / Sign up

Export Citation Format

Share Document