scholarly journals Current Trend of Carbon Emissions from Wildfires in Siberia

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 559
Author(s):  
Evgenii Ponomarev ◽  
Nikita Yakimov ◽  
Tatiana Ponomareva ◽  
Oleg Yakubailik ◽  
Susan G. Conard

Smoke from wildfires in Siberia often affects air quality over vast territories of the Northern hemisphere during the summer. Increasing fire emissions also affect regional and global carbon balance. To estimate annual carbon emissions from wildfires in Siberia from 2002–2020, we categorized levels of fire intensity for individual active fire pixels based on fire radiative power data from the standard MODIS product (MOD14/MYD14). For the last two decades, estimated annual direct carbon emissions from wildfires varied greatly, ranging from 20–220 Tg C per year. Sporadic maxima were observed in 2003 (>150 Tg C/year), in 2012 (>220 Tg C/year), in 2019 (~180 Tg C/year). However, the 2020 fire season was extraordinary in terms of fire emissions (~350 Tg C/year). The estimated average annual level of fire emissions was 80 ± 20 Tg C/year when extreme years were excluded from the analysis. For the next decade the average level of fire emissions might increase to 250 ± 30 Tg C/year for extreme fire seasons, and to 110 ± 20 Tg C/year for moderate fire seasons. However, under the extreme IPCC RPC 8.5 scenario for Siberia, wildfire emissions might increase to 1200–1500 Tg C/year by 2050 if there were no significant changes in patterns of vegetation distribution and fuel loadings.

2019 ◽  
Vol 16 (2) ◽  
pp. 275-288 ◽  
Author(s):  
Pierre Laurent ◽  
Florent Mouillot ◽  
Maria Vanesa Moreno ◽  
Chao Yue ◽  
Philippe Ciais

Abstract. Vegetation fires are an important process in the Earth system. Fire intensity locally impacts fuel consumption, damage to the vegetation, chemical composition of fire emissions and also how fires spread across landscapes. It has been observed that fire occurrence, defined as the frequency of active fires detected by the MODIS sensor, is related to intensity with a hump-shaped empirical relation, meaning that occurrence reaches a maximum at intermediate fire intensity. Raw burned area products obtained from remote sensing can not discriminate between ignition and propagation processes. To go beyond burned area and to test if fire size is driven by fire intensity at a global scale as expected from empirical fire spread models, we used the newly delivered global FRY database, which provides fire patch functional traits based on satellite observation, including fire patch size, and the fire radiative power measures from the MCD14ML dataset. This paper describes the varying relationships between fire size and fire radiative power across biomes at a global scale. We show that in most fire regions of the world defined by the GFED database, the linear relationship between fire radiative power and fire patch size saturates for a threshold of intermediate-intensity fires. The value of this threshold differs from one region to another and depends on vegetation type. In the most fire-prone savanna regions, once this threshold is reached, fire size decreases for the most intense fires, which mostly happen in the late fire season. According to the percolation theory, we suggest that the decrease in fire size for more intense late season fires is a consequence of the increasing fragmentation of fuel continuity throughout the fire season and suggest that landscape-scale feedbacks should be developed in global fire modules.


2020 ◽  
Vol 4 (1) ◽  
pp. 12
Author(s):  
Evgenii I. Ponomarev

Using a database on wildfires recorded by remote sensing for 1996–2020, we assessed the seasonal variation of direct carbon emissions from the burning in Siberian forests. We have implemented an approach that takes into account the combustion parameters and the changing intensity of the fire (in terms of Fire Radiative Power (FRP)), which affects the accuracy of the emission estimate. For the last two decades, the range of direct carbon emissions from wildfires was 20–250 Тg С per year. Sporadic maxima were fixed in 2003 (>150 Тg С/year), in 2012 (>220 Тg С/year), and in 2019 (>190 Тg С/year). Preliminary estimation of emissions for 2020 (on 30th of September) was ~180 Tg С/year. Fires in the larch forests of the flat-mountainous taiga region (Central Siberia) made the greatest contribution (>50%) to the budget of direct fire emission, affecting the quality of the atmosphere in vast territories during the summer period. According to the temperature rising and forest burning trend in Siberia, the fire emissions of carbon may double (220 Тg С/year) or even increase by an order of magnitude (>2000 Тg С/year) at the end of the 21st century, which was evaluated depending on IPCC scenario.


2017 ◽  
Vol 14 (18) ◽  
pp. 3995-4008 ◽  
Author(s):  
Thierry Fanin ◽  
Guido R. van der Werf

Abstract. Over the past decades, fires have burned annually in Indonesia, yet the strength of the fire season is for a large part modulated by the El Niño Southern Oscillation (ENSO). The two most recent very strong El Niño years were 2015 and 1997. Both years involved high incidences of fire in Indonesia. At present, there is no consistent satellite data stream spanning the full 19-year record, thereby complicating a comparison between these two fire seasons. We have investigated how various fire and precipitation datasets can be merged to better compare the fire dynamics in 1997 and 2015 as well as in intermediary years. We combined nighttime active fire detections from the Along Track Scanning Radiometer (ATSR) World Fire Atlas (WFA) available from 1997 until 2012 and the nighttime subset of the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor from 2001 until now. For the overlapping period, MODIS detected about 4 times more fires than ATSR, but this ratio varied spatially. Although the reasons behind this spatial variability remain unclear, the coefficient of determination for the overlapping period was high (R2 = 0. 97, based on monthly data) and allowed for a consistent time series. We then constructed a rainfall time series based on the Global Precipitation Climatology Project (GPCP, 1997–2015) and the Tropical Rainfall Measurement Mission Project (TRMM, 1998–2015). Relations between antecedent rainfall and fire activity were not uniform in Indonesia. In southern Sumatra and Kalimantan, we found that 120 days of rainfall accumulation had the highest coefficient of determination with annual fire intensity. In northern Sumatra, this period was only 30 days. Thresholds of 200 and 305 mm average rainfall accumulation before each active fire were identified to generate a high-incidence fire year in southern Sumatra and southern Kalimantan, respectively. The number of active fires detected in 1997 was 2.2 times higher than in 2015. Assuming the ratio between nighttime and total active fires did not change, the 1997 season was thus about twice as severe as the one in 2015. Although large, the difference is smaller than found in fire emission estimates from the Global Fire Emissions Database (GFED). Besides different rainfall amounts and patterns, the two-fold difference between 1997 and 2015 may be attributed to a weaker El Niño and neutral Indian Ocean Dipole (IOD) conditions in the later year. The fraction of fires burning in peatlands was higher in 2015 compared to 1997 (61 and 45 %, respectively). Finally, we found that the non-linearity between rainfall and fire in Indonesia stems from longer periods without rain in extremely dry years.


2014 ◽  
Vol 14 (5) ◽  
pp. 2447-2466 ◽  
Author(s):  
S. F. Schreier ◽  
A. Richter ◽  
J. W. Kaiser ◽  
J. P. Burrows

Abstract. Nitrogen oxides (NOx) play key roles in atmospheric chemistry, air pollution, and climate. While the largest fraction of these reactive gases is released by anthropogenic emission sources, a significant amount can be attributed to vegetation fires. In this study, NO2 from GOME-2 on board EUMETSAT's MetOp-A and OMI on board NASA's Aura as well as fire radiative power (FRP) from the measurements of MODIS on board NASA's Terra and Aqua satellites are used to derive fire emission rates (FERs) of NOx for different types of vegetation using a simple statistical approach. Monthly means of tropospheric NO2 vertical columns (TVC NO2) have been analyzed for their temporal correlation with the monthly means of FRP for five consecutive years from 2007 to 2011 on a horizontal 1° × 1° grid. The strongest correlation is found to be largely confined to tropical and subtropical regions, which account for more than 80% of yearly burned area, on average, globally. In these regions, the seasonal variation of fire intensity, expressed by the FRP data, is similar to the pattern of TVC NO2. As chemical models typically require values for the amount of NOx being released as a function of time, we have converted the retrieved TVC NO2 into production rates of NOx from fire (Pf) by assuming a constant lifetime of NOx. The comparison between Pf and NOx emissions from the Global Fire Emissions Database (GFEDv3.1) over 5 characteristic biomass burning regions in the tropics and subtropics shows good agreement. By separating the monthly means of Pf and FRP according to land cover type, FERs of NOx could be derived for different biomes. The estimated FERs for the dominating types of vegetation burned are lowest for open shrublands and savannas (0.28–1.03 g NOx s−1 MW−1) and highest for croplands and woody savannas (0.82–1.56 g NOx s−1 MW−1). This analysis demonstrates that the strong empirical relationship between TVC NO2 and FRP and the following simplified assumptions are a useful tool for the characterization of NOx emission rates from vegetation fires in the tropics and subtropics. Possible factors affecting the magnitude of the obtained values are discussed.


2011 ◽  
Vol 11 (12) ◽  
pp. 5839-5851 ◽  
Author(s):  
A. K. Mebust ◽  
A. R. Russell ◽  
R. C. Hudman ◽  
L. C. Valin ◽  
R. C. Cohen

Abstract. We use observations of fire radiative power (FRP) from the Moderate Resolution Imaging Spectroradiometer~(MODIS) and tropospheric NO2 column measurements from the Ozone Monitoring Instrument (OMI) to derive NO2 wildfire emission coefficients (g MJ−1) for three land types over California and Nevada. Retrieved emission coefficients were 0.279±0.077, 0.342±0.053, and 0.696±0.088 g MJ−1 NO2 for forest, grass and shrub fuels, respectively. These emission coefficients reproduce ratios of emissions with fuel type reported previously using independent methods. However, the magnitude of these coefficients is lower than prior estimates. While it is possible that a negative bias in the OMI NO2 retrieval over regions of active fire emissions is partly responsible, comparison with several other studies of fire emissions using satellite platforms indicates that current emission factors may overestimate the contributions of flaming combustion and underestimate the contributions of smoldering combustion to total fire emissions. Our results indicate that satellite data can provide an extensive characterization of the variability in fire NOx emissions; 67 % of the variability in emissions in this region can be accounted for using an FRP-based parameterization.


2016 ◽  
Author(s):  
Thierry Fanin ◽  
Guido van der Werf

Abstract. Over the past decades, fires have burned annually in Indonesia, yet the strength of the fire season is for a large part modulated by the El Niño Southern Oscillation (ENSO). The two most recent very strong El Niño years were 2015 and 1997. Both years involved high incidences of fire in Indonesia. At present, there is no consistent satellite data stream spanning the full 19-year record, thereby complicating a comparison between these two fire seasons. We have investigated how various fire and precipitation datasets can be merged to better compare the fire dynamics in 1997 and 2015 as well as intermediary years. We combined night-time active fire detections from the Along Track Scanning Radiometer (ATSR) World Fire Atlas (WFA) available from 1997 until 2012 and the night-time subset of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor from 2001 until now. For the overlapping period, MODIS detected about 4 times more fires than ATSR, but this ratio varied spatially. Although the reasons behind this spatial variability remain unclear, the temporal correlation for the overlapping period was high (R2 = 0.97) and allowed for a consistent time series. We then constructed a rainfall time series based on the Global Precipitation Climatology Project (GPCP, 1997–2015) and the Tropical Rainfall Measurement Mission Project (TRMM, 1998–2015). Relations between antecedent rainfall and fire activity were not uniform in Indonesia. In southern Sumatra and Kalimantan, we found that 120 days of rainfall accumulation had the highest correlation with annual fire intensity. In northern Sumatra, this period was only 30 days. Thresholds of 200mm and 305mm average rainfall accumulation before each active fire were identified to generate a high fire year in southern Sumatra and southern Kalimantan, respectively. The number of active fires detected in 1997 was 2.2 times higher than in 2015. Assuming the ratio between night-time and total active fires did not change, the 1997 season was thus about twice as fierce as the one in 2015. Although large, the difference is smaller than found in the Global Fire Emissions Database (GFED). Besides different rainfall amounts and patterns, the two-fold difference between 1997 and 2015 may be attributed to a weaker El Niño and neutral IOD conditions in the later year. The fraction of fires burning in peatlands was higher in 2015 compared to 1997 (61 % and 45 %, respectively). Finally, we found that the non-linearity between rainfall and fire in Indonesia stems from longer periods without rain in extremely dry years.


2015 ◽  
Vol 24 (2) ◽  
pp. 249 ◽  
Author(s):  
Sofia L. J. Oliveira ◽  
Stefan W. Maier ◽  
José M. C. Pereira ◽  
Jeremy Russell-Smith

Earth observation sensors play an important role in quantifying the energy released by fires and capturing their spatial and temporal dynamics. Using estimates of MODIS-derived fire radiative power (FRP) we characterised bushfire activity and intensity in tropical savannas of northern Australia, by season and vegetation type, over the period 2004–2012. Our results indicate that fire activity was highest in the Northern Territory and lowest in Queensland. Mean daily number of fire detections was almost twice as high in the late dry season (August–November) compared to the early dry season (May–July). Fire season was bimodal with fire activity peaks in May and October. Median fire intensity was lower for early dry season fires (29 MW) than late dry season fires (56 MW), and was positively correlated with the number of fire detections. Vegetation types with sparse canopy structure showed lower fire activity and higher intensity. Remote sensing of FRP provides frequent estimates of fire intensity over broad areas, allowing the comparison of this key fire behaviour metric across ecosystems and throughout the fire season. FRP estimates may also be used to draw inferences regarding fire effects, once the complexity and ecosystem-specificity of the relationships between fire intensity and fire severity is acknowledged.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Libonati ◽  
J. M. C. Pereira ◽  
C. C. Da Camara ◽  
L. F. Peres ◽  
D. Oom ◽  
...  

AbstractBiomass burning in the Brazilian Amazon is modulated by climate factors, such as droughts, and by human factors, such as deforestation, and land management activities. The increase in forest fires during drought years has led to the hypothesis that fire activity decoupled from deforestation during the twenty-first century. However, assessment of the hypothesis relied on an incorrect active fire dataset, which led to an underestimation of the decreasing trend in fire activity and to an inflated rank for year 2015 in terms of active fire counts. The recent correction of that database warrants a reassessment of the relationships between deforestation and fire. Contrasting with earlier findings, we show that the exacerbating effect of drought on fire season severity did not increase from 2003 to 2015 and that the record-breaking dry conditions of 2015 had the least impact on fire season of all twenty-first century severe droughts. Overall, our results for the same period used in the study that originated the fire-deforestation decoupling hypothesis (2003–2015) show that decoupling was clearly weaker than initially proposed. Extension of the study period up to 2019, and novel analysis of trends in fire types and fire intensity strengthened this conclusion. Therefore, the role of deforestation as a driver of fire activity in the region should not be underestimated and must be taken into account when implementing measures to protect the Amazon forest.


2017 ◽  
Author(s):  
Francesca Di Giuseppe ◽  
Samuel Rémy ◽  
Florian Pappenberger ◽  
Fredrik Wetterhall

Abstract. The atmospheric composition analysis and forecast for the European Copernicus Atmosphere Monitoring Services (CAMS) relies on biomass burning fire emission estimates from the Global Fire Assimilation System (GFAS). GFAS converts fire radiative power (FRP) observations from MODIS satellites into smoke constituents. Missing observations are filled in using persistence where observed FRP from the previous day are progressed in time until a new observation is recorded. One of the consequences of this assumption is an overestimation of fire duration, which in turn translates into an overestimation of emissions from fires. In this study persistence is replaced by modelled predictions using the Canadian Fire Weather Index (FWI), which describes how atmospheric conditions affect the vegetation moisture content and ultimately fire duration. The skill in predicting emissions from biomass burning is improved with the new technique, which indicates that using an FWI-based model to infer emissions from FRP is better than persistence when observations are not available.


2013 ◽  
Vol 13 (11) ◽  
pp. 28453-28510
Author(s):  
S. F. Schreier ◽  
A. Richter ◽  
J. W. Kaiser ◽  
J. P. Burrows

Abstract. Nitrogen oxides (NOx) play key roles in atmospheric chemistry, air pollution, and climate. While the largest fraction of these reactive gases is released by anthropogenic emission sources, a significant amount can be attributed to vegetation fires. In this study, NO2 from GOME-2 on board EUMETSAT's MetOp-A and OMI on board NASA's Aura as well as fire radiative power (FRP) from the measurements of MODIS on board NASA's Terra and Aqua are used to derive fire emission rates (FERs) of NOx for different types of vegetation using a simple statistical approach. Monthly means of tropospheric NO2 vertical columns (TVC NO2) have been analyzed for their temporal correlation with the monthly means of FRP for five consecutive years from 2007 to 2011 on a horizontal 1° × 1° grid. The strongest correlation is found to be largely confined to tropical and subtropical regions, which account for more than 80% of yearly burned area on average globally. In these regions, the seasonal variation of fire intensity, expressed by the FRP data, is similar to the pattern of TVC NO2. As chemical models typically require values for the amount of NOx being released as a function of time, we have converted the retrieved TVC NO2 into production rates of NOx from fire (Pf) by assuming a constant lifetime of NOx. The comparison between Pf and NOx emissions from GFEDv3.1 over 5 characteristic biomass burning regions in the tropics and subtropics indicated good agreement. By separating the monthly means of Pf and FRP according to land cover type, FERs of NOx could be derived for different biomes. The estimated FERs for the dominating types of vegetation burned are lowest for open shrublands and savannas (0.28–1.03 g NOx s−1 MW−1) and highest for croplands and woody savannas (0.82–1.56 g NOx s−1 MW−1). This analysis demonstrates clearly that there are biome-specific, diurnal, and regional differences in FERs for the dominating types of vegetation burned in the tropics and subtropics. Possible factors affecting the magnitude of the obtained values are discussed.


Sign in / Sign up

Export Citation Format

Share Document