scholarly journals Emissions of Volatile Organic Compounds (VOCs) from an Open-Circuit Dry Cleaning Machine Using a Petroleum-Based Organic Solvent: Implications for Impacts on Air Quality

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 637
Author(s):  
Hyeonji Lee ◽  
Kyunghoon Kim ◽  
Yelim Choi ◽  
Daekeun Kim

Volatile organic compounds (VOCs) are known to play an important role in tropospheric chemistry, contributing to ozone and secondary organic aerosol (SOA) generation. Laundry facilities, using petroleum-based organic solvents, are one of the sources of VOCs emissions. However, little is known about the significance of VOCs, emitted from laundry facilities, in the ozone and SOA generation. In this study, we characterized VOCs emission from a dry-cleaning process using petroleum-based organic solvents. We also assessed the impact of the VOCs on air quality by using photochemical ozone creation potential and secondary organic aerosol potential. Among 94 targeted compounds including toxic organic air pollutants and ozone precursors, 36 compounds were identified in the exhaust gas from a drying machine. The mass emitted from one cycle of drying operation (40 min) was the highest in decane (2.04 g/dry cleaning). Decane, nonane, and n-undecane were the three main contributors to ozone generation (more than 70% of the total generation). N-undecane, decane, and n-dodecane were the three main contributors to the SOA generation (more than 80% of the total generation). These results help to understand VOCs emission from laundry facilities and impacts on air quality.

Author(s):  
Hind A. A. Al-Abadleh

Extensive research has been done on the processes that lead to the formation of secondary organic aerosol (SOA) including atmospheric oxidation of volatile organic compounds (VOCs) from biogenic and anthropogenic...


2018 ◽  
Author(s):  
Mounir Chrit ◽  
Karine Sartelet ◽  
Jean Sciare ◽  
Marwa Majdi ◽  
José Nicolas ◽  
...  

Abstract. Organic aerosols are measured at a remote site (Ersa) on Corsica Cape in the northwestern Mediterranean basin during the Chemistry-Aerosol Mediterranean Experiment (CharMEx) winter campaign of 2014, when high organic concentrations from anthropogenic origin are observed. This work aims at representing the observed organic aerosol concentrations and properties (oxidation state) using the air-quality model Polyphemus with a surrogate approach for secondary organic aerosol (SOA) formation. Because intermediate/semi-volatile organic compounds (I/S-VOC) are the main precursors of SOA at Ersa during the winter 2014, different parameterizations to represent the emission and ageing of I/S-VOC were implemented in the chemistry-transport model of the air-quality platform Polyphemus (different volatility distribution emissions, single-step oxidation vs multi-step oxidation within a Volatility Basis Set framework, inclusion of non-traditional volatile organic compounds NTVOC). Simulations using the different parameterizations are compared to each other and to the measurements (concentration and oxidation state). The high observed organic concentrations are well reproduced whatever the parameterizations. They are slightly under-estimated with most parameterizations, but they are slightly over-estimated when the ageing of NTVOC is taken into account. The volatility distribution at emissions influences more strongly the concentrations than the choice of the parameterization that may be used for ageing (single-step oxidation vs multi-step oxidation), stressing the importance of an accurate characterization of emissions. Assuming the volatility distribution of sectors other than residential heating to be the same as residential heating may lead to a strong under-estimation of organic concentrations. The observed organic oxidation and oxygenation states are strongly under-estimated in all simulations, even when a recently developed parameterization for modeling the ageing of I/S-VOC from residential heating is used. This suggests that uncertainties in the ageing of I/S-VOC emissions remain to be elucidated, with a potential role of organic nitrate from anthropogenic precursors and highly oxygenated organic molecules.


2019 ◽  
Vol 19 (11) ◽  
pp. 7429-7443 ◽  
Author(s):  
Tian Feng ◽  
Shuyu Zhao ◽  
Naifang Bei ◽  
Jiarui Wu ◽  
Suixin Liu ◽  
...  

Abstract. The implementation of the Air Pollution Prevention and Control Action Plan in China since 2013 has profoundly altered the ambient pollutants in the Beijing–Tianjin–Hebei (BTH) region. Here we show observations of substantially increased O3 concentrations (about 30 %) and a remarkable increase in the ratio of organic carbon (OC) to elemental carbon (EC) in BTH during the autumn from 2013 to 2015, revealing an enhancement in atmospheric oxidizing capacity (AOC) and secondary organic aerosol (SOA) formation. To explore the impacts of increasing AOC on the SOA formation, a severe air pollution episode from 3 to 8 October 2015 with high O3 and PM2.5 concentrations is simulated using the WRF-Chem model. The model performs reasonably well in simulating the spatial distributions of PM2.5 and O3 concentrations over BTH and the temporal variations in PM2.5, O3, NO2, OC, and EC concentrations in Beijing compared to measurements. Sensitivity studies show that the change in AOC substantially influences the SOA formation in BTH. A sensitivity case characterized by a 31 % O3 decrease (or 36 % OH decrease) reduces the SOA level by about 30 % and the SOA fraction in total organic aerosol by 17 % (from 0.52 to 0.43, dimensionless). Spatially, the SOA decrease caused by reduced AOC is ubiquitous in BTH, but the spatial relationship between SOA concentrations and the AOC is dependent on the SOA precursor distribution. Studies on SOA formation pathways further show that when the AOC is reduced, the SOA from oxidation and partitioning of semivolatile primary organic aerosol (POA) and co-emitted intermediate volatile organic compounds (IVOCs) decreases remarkably, followed by those from anthropogenic and biogenic volatile organic compounds (VOCs). Meanwhile, the SOA decrease in the irreversible uptake of glyoxal and methylglyoxal on the aerosol surfaces is negligible.


2016 ◽  
Author(s):  
N. L. Ng ◽  
S. S. Brown ◽  
A. T. Archibald ◽  
E. Atlas ◽  
R. C. Cohen ◽  
...  

Abstract. Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than three decades, during which time a large body of research has emerged from laboratory, field and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry-climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first section summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.


Sign in / Sign up

Export Citation Format

Share Document