scholarly journals Green Leaf Volatiles in the Atmosphere—Properties, Transformation, and Significance

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1655
Author(s):  
Kumar Sarang ◽  
Krzysztof J. Rudziński ◽  
Rafał Szmigielski

This review thoroughly covers the research on green leaf volatiles (GLV) in the context of atmospheric chemistry. It briefly takes on the GLV sources, in-plant synthesis, and emission inventory data. The discussion of properties includes GLV solubility in aqueous systems, Henry’s constants, partition coefficients, and UV spectra. The mechanisms of gas-phase reactions of GLV with OH, NO3, and Cl radicals, and O3 are explained and accompanied by a catalog of products identified experimentally. The rate constants of gas-phase reactions are collected in tables with brief descriptions of corresponding experiments. A similar presentation covers the aqueous-phase reactions of GLV. The review of multiphase and heterogeneous transformations of GLV covers the smog-chamber experiments, products identified therein, along with their yields and the yields of secondary organic aerosols (SOA) formed, if any. The components of ambient SOA linked to GLV are briefly presented. This review recognized GLV as atmospheric trace compounds that reside primarily in the gas phase but did not exclude their transformation in atmospheric waters. GLV have a proven potential to be a source of SOA with a global burden of 0.6 to 1 Tg yr−1 (estimated jointly for (Z)-hexen-1-ol, (Z)-3-hexenal, and 2-methyl-3-buten-2-ol), 0.03 Tg yr−1 from switch grass cultivation for biofuels, and 0.05 Tg yr−1 from grass mowing.

2013 ◽  
Vol 37 (3) ◽  
pp. 268-275
Author(s):  
Hai-Feng SUN ◽  
Zhen-Yu LI ◽  
Bin WU ◽  
Xue-Mei QIN

2008 ◽  
Vol 199 (1) ◽  
pp. 92-97 ◽  
Author(s):  
M.P. Sulbaek Andersen ◽  
E.J.K. Nilsson ◽  
O.J. Nielsen ◽  
M.S. Johnson ◽  
M.D. Hurley ◽  
...  

Author(s):  
Etienne Cardinal ◽  
Brenda Shepherd ◽  
Jodie Krakowski ◽  
Carl James Schwarz ◽  
John Stirrett-Wood

This is the first study testing effectiveness of semiochemical treatments to protect individual trees from a range-expanding mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins) attack into newly exposed host populations of endangered whitebark pine (Pinus albicaulis Engelmann). We investigated the effectiveness of a combination of verbenone and Green-Leaf Volatiles (GLV) to protect rare and valuable disease-resistant trees during a MPB epidemic from 2015 to 2018 in Jasper National Park, Canada. Treatments reduced the proportion of trees attacked by MPB for all diameter classes, across all stands, from 46 to 60%. We also evaluated the effect of the exotic disease white pine blister rust (caused by the fungus Cronartium ribicola J.C. Fisch), the species’ other main regional threat. MPB were less likely to attack large, rust infected trees than healthy trees, emphasizing the value of the semiochemical treatment. Protecting large, cone-bearing disease-resistant whitebark pine trees is fundamental to whitebark pine recovery. Maintaining reproductive trees on the landscape increases the frequency and diversity of rust-resistant genotypes more effectively than just planting seedlings to replace MPB-killed trees, because this slow-growing species takes over 80 years to reproduce. Our study confirmed protecting large rust-resistant trees with verbenone and GLV is a proactive and effective treatment against MPB for whitebark pine in naïve populations.


The Analyst ◽  
2012 ◽  
Vol 137 (13) ◽  
pp. 3138 ◽  
Author(s):  
Yogeswaran Umasankar ◽  
Glen C. Rains ◽  
Ramaraja P. Ramasamy

2020 ◽  
Vol 174 ◽  
pp. 112334 ◽  
Author(s):  
Yongming He ◽  
Eli J. Borrego ◽  
Zachary Gorman ◽  
Pei-Cheng Huang ◽  
Michael V. Kolomiets

Sign in / Sign up

Export Citation Format

Share Document