scholarly journals A Polarized Atmospheric Radiative Transfer Model for Calculations of Spectra of the Stokes Parameters of Shortwave Radiation Based on the Line-by-Line and Monte Carlo Methods

Atmosphere ◽  
2012 ◽  
Vol 3 (4) ◽  
pp. 451-467 ◽  
Author(s):  
Boris Fomin ◽  
Victoria Falaleeva
2011 ◽  
Vol 112 (6) ◽  
pp. 1119-1137 ◽  
Author(s):  
Tim Deutschmann ◽  
Steffen Beirle ◽  
Udo Frieß ◽  
Michael Grzegorski ◽  
Christoph Kern ◽  
...  

1981 ◽  
Vol 20 (20) ◽  
pp. 3653 ◽  
Author(s):  
L. R. Poole ◽  
D. D. Venable ◽  
J. W. Campbell

2021 ◽  
Author(s):  
Megan Stretton ◽  
William Morrison ◽  
Robin Hogan ◽  
Sue Grimmond

<p>The heterogenous structure of cities impacts radiative exchanges (e.g. albedo and heat storage). Numerical weather prediction (NWP) models often characterise the urban structure with an infinite street canyon – but this does not capture the three-dimensional urban form. SPARTACUS-Urban (SU) - a fast, multi-layer radiative transfer model designed for NWP - is evaluated using the explicit Discrete Anisotropic Radiative Transfer (DART) model for shortwave fluxes across several model domains – from a regular array of cubes to real cities .</p><p>SU agrees with DART (errors < 5.5% for all variables) when the SU assumptions of building distribution are fulfilled (e.g. randomly distribution). For real-world areas with pitched roofs, SU underestimates the albedo (< 10%) and shortwave transmission to the surface (< 15%), and overestimates wall-plus-roof absorption (9-27%), with errors increasing with solar zenith angle. SU should be beneficial to weather and climate models, as it allows more realistic urban form (cf. most schemes) without large increases in computational cost.</p>


2015 ◽  
Vol 8 (3) ◽  
pp. 3357-3397 ◽  
Author(s):  
D. J. Zawada ◽  
S. R. Dueck ◽  
L. A. Rieger ◽  
A. E. Bourassa ◽  
N. D. Lloyd ◽  
...  

Abstract. The OSIRIS instrument on board the Odin spacecraft has been measuring limb scattered radiance since 2001. The vertical radiance profiles measured as the instrument nods are inverted, with the aid of the SASKTRAN radiative transfer model, to obtain vertical profiles of trace atmospheric constituents. Here we describe two newly developed modes of the SASKTRAN radiative transfer model: a high spatial resolution mode, and a Monte Carlo mode. The high spatial resolution mode is a successive orders model capable of modelling the multiply scattered radiance when the atmosphere is not spherically symmetric; the Monte Carlo mode is intended for use as a highly accurate reference model. It is shown that the two models agree in a wide variety of solar conditions to within 0.2%. As an example case for both models, Odin-OSIRIS scans were simulated with the Monte Carlo model and retrieved using the high resolution model. A systematic bias of up to 4% in retrieved ozone number density between scans where the instrument is scanning up or scanning down was identified. It was found that calculating the multiply scattered diffuse field at five discrete solar zenith angles is sufficient to eliminate the bias for typical Odin-OSIRIS geometries.


2010 ◽  
Vol 31 (5) ◽  
pp. 1343-1358 ◽  
Author(s):  
P. R. J. North ◽  
J. A. B. Rosette ◽  
J. C. Suárez ◽  
S. O. Los

Solar Energy ◽  
2016 ◽  
Vol 132 ◽  
pp. 558-569 ◽  
Author(s):  
Giorgio Belluardo ◽  
Grazia Barchi ◽  
Dietmar Baumgartner ◽  
Marcus Rennhofer ◽  
Philipp Weihs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document