scholarly journals An Analysis of Precipitation Extremes in the Inner Mongolian Plateau: Spatial-Temporal Patterns, Causes, and Implications

Atmosphere ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 322 ◽  
Author(s):  
Chunlan Li ◽  
Walter Leal Filho ◽  
Jun Wang ◽  
Hubert Fudjumdjum ◽  
Mariia Fedoruk ◽  
...  

To improve how extreme events and climate variations are managed, there is a need to foster a deeper understanding of their interconnections. Consistent with this objective, this paper describes how precipitation extremes change both temporally and spatially in the Inner Mongolian Plateau (IMP), China and explains their causal factors. The paper refers to data collected from 43 meteorological stations in IMP and describes how precipitation extremes formed and how they influence agriculture. Data gathered and presented in this paper may be useful in understanding the extent to which the IMP is being influenced by global environmental change. This study reveals that the eleven precipitation extremes indices, except the number of precipitation days with over 0.5 mm (R0.5), number of heavy precipitation days (R10), and total precipitation in wet days (PRCPTOT), decreased in the IMP between 1959 and 2014, and most of them were non-significant in temporal. But the dry index has a larger magnitude decreasing trend than that of the wet indices, which can indicate that the dry situation was alleviated in IMP during the study interval. This study also indicated that precipitation extremes have strong relationships with elevation, latitude, and longitude. Atmospheric circulation and topography may be further primary reasons which result in the spatial variation characteristics in precipitation extremes over the IMP. Decreases in precipitation extremes, together with human activities such as livestock improvement and ecological restoration programs, has a positive effect in gross output value of agriculture and animal husbandry in the IMP. The results contribute to a deeper insight on the possible impacts of precipitation extremes and support the development of appropriate adaptation and mitigation strategies to cope with climate extremes. This paper further proposes science-based policies for grassland protection, agriculture, and animal husbandry on the national or regional and herdsman scales.

2016 ◽  
Vol 55 (5) ◽  
pp. 1169-1182 ◽  
Author(s):  
Lei Wang ◽  
Zhi-Jun Yao ◽  
Li-Guang Jiang ◽  
Rui Wang ◽  
Shan-Shan Wu ◽  
...  

AbstractThe spatiotemporal changes in 21 indices of extreme temperature and precipitation for the Mongolian Plateau from 1951 to 2012 were investigated on the basis of daily temperature and precipitation data from 70 meteorological stations. Changes in catastrophic events, such as droughts, floods, and snowstorms, were also investigated for the same period. The correlations between catastrophic events and the extreme indices were examined. The results show that the Mongolian Plateau experienced an asymmetric warming trend. Both the cold extremes and warm extremes showed greater warming at night than in the daytime. The spatial changes in significant trends showed a good homogeneity and consistency in Inner Mongolia. Changes in the precipitation extremes were not as obvious as those in the temperature extremes. The spatial distributions in changes of precipitation extremes were complex. A decreasing trend was shown for total precipitation from west to east as based on the spatial distribution of decadal trends. Drought was the most serious extreme disaster, and prolonged drought for longer than 3 yr occurred about every 7–11 yr. An increasing trend in the disaster area was apparent for flood events from 1951 to 2012. A decreasing trend was observed for the maximum depth of snowfall from 1951 to 2012, with a decreased average maximum depth of 10 mm from the 1990s.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Karin van der Wiel ◽  
Richard Bintanja

AbstractThe frequency of climate extremes will change in response to shifts in both mean climate and climate variability. These individual contributions, and thus the fundamental mechanisms behind changes in climate extremes, remain largely unknown. Here we apply the probability ratio concept in large-ensemble climate simulations to attribute changes in extreme events to either changes in mean climate or climate variability. We show that increased occurrence of monthly high-temperature events is governed by a warming mean climate. In contrast, future changes in monthly heavy-precipitation events depend to a considerable degree on trends in climate variability. Spatial variations are substantial however, highlighting the relevance of regional processes. The contributions of mean and variability to the probability ratio are largely independent of event threshold, magnitude of warming and climate model. Hence projections of temperature extremes are more robust than those of precipitation extremes, since the mean climate is better understood than climate variability.


2019 ◽  
pp. 473-494
Author(s):  
Gensuo Jia ◽  
Li Zhang ◽  
Lanwei Zhu ◽  
Ronghan Xu ◽  
Dong Liang ◽  
...  

Abstract Our planet is undergoing one of the most rapid climate changes in Earth’s history. The current change is particularly significant because it is most likely a consequence of human activities since the 19th century. The Digital Earth platform, which includes Earth-orbiting satellites, ground-based observations, and other technologies for collecting, analyzing and visualizing data, has enabled scientists to see our climate and its impacts at regional and global scales. The Digital Earth platform offers valuable information on the atmosphere, biosphere, hydrosphere and cryosphere to understand Earth’s past and present, and it supports Earth system models for climate prediction and projection. This chapter gives an overview of the advances in climate change studies based on Digital Earth and provides case studies that utilize Digital Earth in climate change research, such as in the observation of sensitive factors for climate change, global environmental change information and simulation systems, and synchronous satellite-aerial-ground observation experiments, which provide extremely large and abundant datasets. The mapping of climate extremes and impacts improves preparedness for climate change-related risks and provides robust evidence to support climate risk management and climate change adaptation for the public, decision makers, investors, and vulnerable communities. However, Digital Earth faces the challenges of multisource data coordination and integration, requiring international partnerships between governments and other organizations to advance open data policies and practices.


jpa ◽  
1991 ◽  
Vol 4 (3) ◽  
pp. 291-293 ◽  
Author(s):  
Stephen L. Rawlins

Author(s):  
Machiel Lamers ◽  
Jeroen Nawijn ◽  
Eke Eijgelaar

Over the last decades a substantial and growing societal and academic interest has emerged for the development of sustainable tourism. Scholars have highlighted the contribution of tourism to global environmental change and to local, detrimental social and environmental effects as well as to ways in which tourism contributes to nature conservation. Nevertheless the role of tourist consumers in driving sustainable tourism has remained unconvincing and inconsistent. This chapter reviews the constraints and opportunities of political consumerism for sustainable tourism. The discussion covers stronger pockets and a key weak pocket of political consumerism for sustainable tourism and also highlights inconsistencies in sustainable tourism consumption by drawing on a range of social theory arguments and possible solutions. The chapter concludes with an agenda for future research on this topic.


Toxicon X ◽  
2021 ◽  
pp. 100069
Author(s):  
Gerardo Martín ◽  
Carlos Yáñez-Arenas ◽  
Rodrigo Rangel-Camacho ◽  
Kris A. Murray ◽  
Eyal Goldstein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document