scholarly journals Electrospun Scaffolds and Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Cardiac Tissue Engineering Applications

2020 ◽  
Vol 7 (3) ◽  
pp. 105
Author(s):  
Taylor Cook Suh ◽  
Alaowei Y. Amanah ◽  
Jessica M. Gluck

Tissue engineering (TE) combines cells, scaffolds, and growth factors to assemble functional tissues for repair or replacement of tissues and organs. Cardiac TE is focused on developing cardiac cells, tissues, and structures—most notably the heart. This review presents the requirements, challenges, and research surrounding electrospun scaffolds and induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) towards applications to TE hearts. Electrospinning is an attractive fabrication method for cardiac TE scaffolds because it produces fibers that demonstrate the optimal potential for mimicking the complex structure of the cardiac extracellular matrix (ECM). iPSCs theoretically offer the capacity to generate limitless numbers of CMs for use in TE hearts, however these iPSC-CMs are electrophysiologically, morphologically, mechanically, and metabolically immature compared to adult CMs. This presents a functional limitation to their use in cardiac TE, and research aiming to address this limitation is presented in this review.

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Suh Hee T Cook ◽  
Jessica Gluck

Heart disease is the leading cause of death worldwide. Cardiac tissue engineering (CTE) aims to repair and replace heart tissue, offering a solution. Induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) could revolutionize CTE due to their theoretical ability to supply limitless patient-specific CMs. However, iPSC-CMs are electrophysiologically immature compared to functional adult CMs, and therefore incapable of sustaining a heartbeat. Thus, a scaffold capable of electrophysiologically maturing iPSC-CMs is needed. My research increases the electroconductivity of electrospun (ES) scaffolds by incorporating carbon nanotubes (CNTs), which I hypothesize will mature iPSC-CMs seeded onto them due to their excellent electroconductive properties. Morphological, biocompatibility, and electrical analyses have been performed on ES polycaprolactone (PCL) and gelatin scaffolds with CNTs incorporated via a ‘sandwich’ and dual deposition method in order to increase electroconductivity. Morphological analyses were performed via ImageJ on SEM images. Fiber diameter and pore size quantification confirmed the ability to exert morphological control by modifying solution properties and ES parameters, which is crucial to achieve biomimicry of the cardiac extracellular matrix. Live/dead assays and immunofluorescence revealed the CNT scaffolds offer high biocompatibility for NIH 3T3 fibroblasts, which attach, proliferate, and migrate well. Electrical analysis performed with a multimeter and two-probe resistance measurement confirms that inclusion of CNTs significantly increases scaffold conductivity, moreso for dual deposition scaffolds than ‘sandwich’ ones, and moreso parallel to the CNT arrays than orthogonally. These results prove the feasibility of using such scaffolds as a method for in vitro electrophysiological iPSC-CM maturation. Next steps include optimization of scaffolds, analysis of iPSC-CM biocompatibility and response, and recapitulation and manipulation of the electrophysiology of cardiac tissue, including quantification of markers for cardiac function and maturity, and assessment of iPSC-CM + scaffold response to electrical pacing.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Kimimasa Tobita ◽  
Jason S Tchao ◽  
Jong Kim ◽  
Bo Lin ◽  
Johnny Huard ◽  
...  

We have previously shown that rat skeletal muscle derived stem cells differentiate into an immature cardiomyocyte (CM) phenotype within a 3-dimensional collagen gel engineered cardiac tissue (ECT). Here, we investigated whether human skeletal muscle derived progenitor cells (skMDCs) can differentiate into a CM phenotype within ECT similar to rat skeletal muscle stem cells and compared the human skMDC-ECT properties with ECT from human induced pluripotent stem cell (iPSc) derived CMs. SkMDCs differentiated into a cardiac muscle phenotype within ECT and exhibited spontaneous beating activity as early as culture day 4 and maintained their activity for more than 2 weeks. SkMDC-ECTs stained positive for cardiac specific troponin-T and troponin-I, and were co-localized with fast skeletal muscle myosin heavy chain (sk-fMHC) with a striated muscle pattern similar to fetal myocardium. The iPS-CM-ECTs maintained spontaneous beating activity for more than 2 weeks from ECT construction. iPS-CM stained positive for both cardiac troponin-T and troponin-I, and were also co-localized with sk-fMHC while the striated expression pattern of sk-fMHC was lost similar to post-natal immature myocardium. Connexin-43 protein was expressed in both engineered tissue types, and the expression pattern was similar to immature myocardium. The skMDC-ECT significantly upregulated expression of cardiac-specific genes compared to conventional 2D culture. SkMDC-ECT displayed cardiac muscle like intracellular calcium ion transients. The contractile force measurements demonstrated functional properties of fetal type myocardium in both ECTs. Our results suggest that engineered human cardiac tissue from skeletal muscle progenitor cells mimics developing fetal myocardium while the engineered cardiac tissue from inducible pluripotent stem cell-derived cardiomyocytes mimics post-natal immature myocardium.


2016 ◽  
Vol 4 (11) ◽  
pp. 1655-1662 ◽  
Author(s):  
Li Wang ◽  
Xiaoqing Zhang ◽  
Cong Xu ◽  
Hui Liu ◽  
Jianhua Qin

We present a new strategy to produce a thin collagen membrane from porcine tendons and engineered cardiac tissues using hiPSC-derived cardiomyocytes.


Sign in / Sign up

Export Citation Format

Share Document