in vivo tissue engineering
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 5)

H-INDEX

14
(FIVE YEARS 2)

2020 ◽  
Vol 73 (10) ◽  
pp. 1889-1896
Author(s):  
Yoshio Tanaka ◽  
Motogi Tamai ◽  
Noriyuki Taguchi ◽  
Aizezi Niyazi ◽  
Masaki Ueno ◽  
...  

2020 ◽  
Vol 14 (4) ◽  
pp. 633-644
Author(s):  
Heidi Debels ◽  
Jason Palmer ◽  
Xiao‐Lian Han ◽  
Christopher Poon ◽  
Keren Abberton ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
pp. 1177-1192
Author(s):  
Soumen Jana ◽  
Amir Lerman

Aim: We aimed to develop a leaflet-shaped trilayered tissue construct mimicking the morphology of native heart valve leaflets. Materials & methods: Electrospinning and in vivo tissue engineering methods were employed. Results: We developed leaflet-shaped microfibrous scaffolds, each with circumferentially, randomly and radially oriented three layers mimicking the trilayered, oriented structure of native leaflets. After 3 months in vivo tissue engineering with the scaffolds, the generated leaflet-shaped tissue constructs had a trilayered structure mimicking the orientations of native heart valve leaflets. Presence of collagen, glycosaminoglycans and elastin seen in native leaflets was observed in the engineered tissue constructs. Conclusion: Trilayered, oriented fibrous scaffolds brought the orientations of the infiltrated cells and their produced extracellular matrix proteins into the constructs.


2018 ◽  
Vol 6 (3) ◽  
pp. 550-561 ◽  
Author(s):  
Koji Nagahama ◽  
Naho Oyama ◽  
Kimika Ono ◽  
Atsushi Hotta ◽  
Keiko Kawauchi ◽  
...  

Nanocomposite injectable gels, which self-replenish regenerative extracellular microenvironments within the gels in the body by utilizing host-derived bioactive molecules as building blocks, are reported.


2018 ◽  
Vol 59 (3-4) ◽  
pp. 286-299 ◽  
Author(s):  
Annika Weigand ◽  
Raymund E. Horch ◽  
Anja M. Boos ◽  
Justus P. Beier ◽  
Andreas Arkudas

Background: Most of the current treatment options for large-scale tissue defects represent a serious burden for the patients, are often not satisfying, and can be associated with significant side effects. Although major achievements have already been made in the field of tissue engineering, the clinical translation in case of extensive tissue defects is only in its early stages. The main challenge and reason for the failure of most tissue engineering approaches is the missing vascularization within large-scale transplants. Summary: The arteriovenous (AV) loop model is an in vivo tissue engineering strategy for generating axially vascularized tissues using the own body as a bioreactor. A superficial artery and vein are anastomosed to create an AV loop. This AV loop is placed into an implantation chamber for prevascularization of the chamber inside, e.g., a scaffold, cells, and growth factors. Subsequently, the generated tissue can be transplanted with its vascular axis into the defect site and anastomosed to the local vasculature. Since the blood supply of the growing tissue is based on the AV loop, it will be immediately perfused with blood in the recipient site leading to optimal healing conditions even in the case of poorly vascularized defects. Using this tissue engineering approach, a multitude of different axially vascularized tissues could be generated, such as bone, skeletal or heart muscle, or lymphatic tissues. Upscaling from the small animal AV loop model into a preclinical large animal model could pave the way for the first successful attempt in clinical application. Key Messages: The AV loop model is a powerful tool for the generation of different axially vascularized replacement tissues. Due to minimal donor site morbidity and the possibility to generate patient-specific tissues variable in type and size, this in vivo tissue engineering approach can be considered as a promising alternative therapy to current treatment options of large-scale defects.


2017 ◽  
Vol 103 (5) ◽  
pp. 1631-1640 ◽  
Author(s):  
Emmanuel Martinod ◽  
Joseph Paquet ◽  
Hervé Dutau ◽  
Dana M. Radu ◽  
Morad Bensidhoum ◽  
...  

2013 ◽  
Vol 19 (11-12) ◽  
pp. 1327-1335 ◽  
Author(s):  
Ken Matsuda ◽  
Katrina J. Falkenberg ◽  
Alan A. Woods ◽  
Yu Suk Choi ◽  
Wayne A. Morrison ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document