scholarly journals P3CMQA: Single-Model Quality Assessment Using 3DCNN with Profile-Based Features

2021 ◽  
Vol 8 (3) ◽  
pp. 40
Author(s):  
Yuma Takei ◽  
Takashi Ishida

Model quality assessment (MQA), which selects near-native structures from structure models, is an important process in protein tertiary structure prediction. The three-dimensional convolution neural network (3DCNN) was applied to the task, but the performance was comparable to existing methods because it used only atom-type features as the input. Thus, we added sequence profile-based features, which are also used in other methods, to improve the performance. We developed a single-model MQA method for protein structures based on 3DCNN using sequence profile-based features, namely, P3CMQA. Performance evaluation using a CASP13 dataset showed that profile-based features improved the assessment performance, and the proposed method was better than currently available single-model MQA methods, including the previous 3DCNN-based method. We also implemented a web-interface of the method to make it more user-friendly.

2013 ◽  
Vol 22 (05) ◽  
pp. 1360006 ◽  
Author(s):  
QINGGUO WANG ◽  
CHARLES SHANG ◽  
DONG XU ◽  
YI SHANG

In protein tertiary structure prediction, assessing the quality of predicted models is an essential task. Over the past years, many methods have been proposed for the protein model quality assessment (QA) and selection problem. Despite significant advances, the discerning power of current methods is still unsatisfactory. In this paper, we propose two new algorithms, CC-Select and MDS-QA, based on multidimensional scaling and k-means clustering. For the model selection problem, CC-Select combines consensus with clustering techniques to select the best models from a given pool. Given a set of predicted models, CC-Select first calculates a consensus score for each structure based on its average pairwise structural similarity to other models. Then, similar structures are grouped into clusters using multidimensional scaling and clustering algorithms. In each cluster, the one with the highest consensus score is selected as a candidate model. For the QA problem, MDS-QA combines single-model scoring functions with consensus to determine more accurate assessment score for every model in a given pool. Using extensive benchmark sets of a large collection of predicted models, we compare the two algorithms with existing state-of-the-art quality assessment methods and show significant improvement.


2020 ◽  
Author(s):  
Jianquan Ouyang ◽  
Ningqiao Huang ◽  
Yunqi Jiang

Abstract Quality assessment of protein tertiary structure prediction models, in which structures of the best quality are selected from decoys, is a major challenge in protein structure prediction, and is crucial to determine a model’s utility and potential applications. Estimating the quality of a single model predicts the model’s quality based on the single model itself. In general, the Pearson correlation value of the quality assessment method increases in tandem with an increase in the quality of the model pool. However, there is no consensus regarding the best method to select a few good models from the poor quality model pool. In this work, we introduce a novel single-model quality assessment method for poor quality models that uses simple linear combinations of six features. We perform weighted search and linear regression on a large dataset of models from the 12th Critical Assessment of Protein Structure Prediction (CASP12) and benchmark the results on CASP13 models. We demonstrate that our method achieves outstanding performance on poor quality models.


2020 ◽  
Author(s):  
Jianquan Ouyang ◽  
Ningqiao Huang ◽  
Yunqi Jiang

Abstract Background: Quality assessment of protein tertiary structure prediction models, in which structures of the best quality are selected from decoys, is a major challenge in protein structure prediction, and is crucial to determine a model’s utility and potential applications. Estimating the quality of a single model predicts the model’s quality based on the single model itself. In general, the Pearson correlation value of the quality assessment method increases in tandem with an increase in the quality of the model pool. However, there is no consensus regarding the best method to select a few good models from the poor quality model pool.Results: We introduce a novel single-model quality assessment method for poor quality models that uses simple linear combinations of six features. We perform weighted search and linear regression on a large dataset of models from the 12th Critical Assessment of Protein Structure Prediction (CASP12) and benchmark the results on CASP13 models. We demonstrate that our method achieves outstanding performance on poor quality models.Conclusions: According to results of poor protein structure assessment based on six features, contact prediction and relying on fewer prediction features can improve selection accuracy.


Author(s):  
Arun G. Ingale

To predict the structure of protein from a primary amino acid sequence is computationally difficult. An investigation of the methods and algorithms used to predict protein structure and a thorough knowledge of the function and structure of proteins are critical for the advancement of biology and the life sciences as well as the development of better drugs, higher-yield crops, and even synthetic bio-fuels. To that end, this chapter sheds light on the methods used for protein structure prediction. This chapter covers the applications of modeled protein structures and unravels the relationship between pure sequence information and three-dimensional structure, which continues to be one of the greatest challenges in molecular biology. With this resource, it presents an all-encompassing examination of the problems, methods, tools, servers, databases, and applications of protein structure prediction, giving unique insight into the future applications of the modeled protein structures. In this chapter, current protein structure prediction methods are reviewed for a milieu on structure prediction, the prediction of structural fundamentals, tertiary structure prediction, and functional imminent. The basic ideas and advances of these directions are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document