scholarly journals Cyclophilin D, Somehow a Master Regulator of Mitochondrial Function

Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 176 ◽  
Author(s):  
George A. Porter ◽  
Gisela Beutner

Cyclophilin D (CyPD) is an important mitochondrial chaperone protein whose mechanism of action remains a mystery. It is well known for regulating mitochondrial function and coupling of the electron transport chain and ATP synthesis by controlling the mitochondrial permeability transition pore (PTP), but more recent evidence suggests that it may regulate electron transport chain activity. Given its identification as a peptidyl-prolyl, cis-trans isomerase (PPIase), CyPD, is thought to be involved in mitochondrial protein folding, but very few reports demonstrate the presence of this activity. By contrast, CyPD may also perform a scaffolding function, as it binds to a number of important proteins in the mitochondrial matrix and inner mitochondrial membrane. From a clinical perspective, inhibiting CyPD to inhibit PTP opening protects against ischemia–reperfusion injury, making modulation of CyPD activity a potentially important therapeutic goal, but the lack of knowledge about the mechanisms of CyPD’s actions remains problematic for such therapies. Thus, the important yet enigmatic nature of CyPD somehow makes it a master regulator, yet a troublemaker, for mitochondrial function.

2021 ◽  
Vol 116 (1) ◽  
Author(s):  
Stefano Comità ◽  
Saveria Femmino ◽  
Cecilia Thairi ◽  
Giuseppe Alloatti ◽  
Kerstin Boengler ◽  
...  

AbstractIschemia–reperfusion injury (IRI) is one of the biggest challenges for cardiovascular researchers given the huge death toll caused by myocardial ischemic disease. Cardioprotective conditioning strategies, namely pre- and post-conditioning maneuvers, represent the most important strategies for stimulating pro-survival pathways essential to preserve cardiac health. Conditioning maneuvers have proved to be fundamental for the knowledge of the molecular basis of both IRI and cardioprotection. Among this evidence, the importance of signal transducer and activator of transcription 3 (STAT3) emerged. STAT3 is not only a transcription factor but also exhibits non-genomic pro-survival functions preserving mitochondrial function from IRI. Indeed, STAT3 is emerging as an influencer of mitochondrial function to explain the cardioprotection phenomena. Studying cardioprotection, STAT3 proved to be crucial as an element of the survivor activating factor enhancement (SAFE) pathway, which converges on mitochondria and influences their function by cross-talking with other cardioprotective pathways. Clearly there are still some functional properties of STAT3 to be discovered. Therefore, in this review, we highlight the evidence that places STAT3 as a promoter of the metabolic network. In particular, we focus on the possible interactions of STAT3 with processes aimed at maintaining mitochondrial functions, including the regulation of the electron transport chain, the production of reactive oxygen species, the homeostasis of Ca2+ and the inhibition of opening of mitochondrial permeability transition pore. Then we consider the role of STAT3 and the parallels between STA3/STAT5 in cardioprotection by conditioning, giving emphasis to the human heart and confounders.


2006 ◽  
Vol 291 (5) ◽  
pp. H2067-H2074 ◽  
Author(s):  
Anastasia Andrukhiv ◽  
Alexandre D. Costa ◽  
Ian C. West ◽  
Keith D. Garlid

Opening the mitochondrial ATP-sensitive K+ channel (mitoKATP) increases levels of reactive oxygen species (ROS) in cardiomyocytes. This increase in ROS is necessary for cardioprotection against ischemia-reperfusion injury; however, the mechanism of mitoKATP-dependent stimulation of ROS production is unknown. We examined ROS production in suspensions of isolated rat heart and liver mitochondria, using fluorescent probes that are sensitive to hydrogen peroxide. When mitochondria were treated with the KATP channel openers diazoxide or cromakalim, their ROS production increased by 40–50%, and this effect was blocked by 5-hydroxydecanoate. ROS production exhibited a biphasic dependence on valinomycin concentration, with peak production occurring at valinomycin concentrations that catalyze about the same K+ influx as KATP channel openers. ROS production decreased with higher concentrations of valinomycin and with all concentrations of a classical protonophoretic uncoupler. Our studies show that the increase in ROS is due specifically to K+ influx into the matrix and is mediated by the attendant matrix alkalinization. Myxothiazol stimulated mitoKATP-dependent ROS production, whereas rotenone had no effect. This indicates that the superoxide originates in complex I (NADH:ubiquinone oxidoreductase) of the electron transport chain.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
He Tai ◽  
Xiao-lin Jiang ◽  
Zhi-ming Lan ◽  
Yue Li ◽  
Liang Kong ◽  
...  

Abstract Background Acute myocardial injury (AMI), which is induced by renal ischemia-reperfusion (IR), is a significant cause of acute kidney injury (AKI)-related associated death. Obesity increases the severity and frequency of AMI and AKI. Tanshinone IIA (TIIA) combined with cyclosporine A (CsA) pretreatment was used to alleviate myocardial cell apoptosis induced by renal IR, and to determine whether TIIA combined with CsA would attenuate myocardial cell apoptosis by modulating mitochondrial function through the PI3K/Akt/Bad pathway in obese rats. Methods Male rates were fed a high fat diet for 8 weeks to generate obesity. AKI was induced by 30 min of kidney ischemia followed 24 h of reperfusion. Obese rats were given TIIA (10 mg/kg·d) for 2 weeks and CsA (5 mg/kg) 30 min before renal IR. After 24 h of reperfusion, the rats were anaesthetized, the blood were fetched from the abdominal aorta and kidney were fetched from abdominal cavity, then related indicators were examined. Results TIIA combined with CsA can alleviate the pathohistological injury and apoptosis induced by renal IR in myocardial cells. TIIA combined with CsA improved cardiac function after renal ischemia (30 min)-reperfusion (24 h) in obese rats. At the same time, TIIA combined with CsA improved mitochondrial function. Abnormal function of mitochondria was supported by decreases in respiration controlling rate (RCR), intracellular adenosine triphosphate (ATP), oxygen consumption rate, and mitochondrial membrane potential (MMP), and increases in mitochondrial reactive oxygen species (ROS), opening of the mitochondrial permeability transition pore (mPTP), mitochondrial DNA damage, and mitochondrial respiratory chain complex enzymes. The injury of mitochondrial dynamic function was assessed by decrease in dynamin-related protein 1 (Drp1), and increases in mitofusin1/2 (Mfn1/2), and mitochondrial biogenesis injury was assessed by decreases in PPARγ coactivator-1-α (PGC-1), nucleo respiratory factor1 (Nrf1), and transcription factor A of mitochondrial (TFam). Conclusion We used isolated mitochondria from rat myocardial tissues to demonstrate that myocardial mitochondrial dysfunction occurred along with renal IR to induce myocardial cell apoptosis; obesity aggravated apoptosis. TIIA combined with CsA attenuated myocardial cell apoptosis by modulating mitochondrial function through the PI3K/Akt/Bad pathway in obese rats.


2018 ◽  
Vol 314 (4) ◽  
pp. H787-H795 ◽  
Author(s):  
Qun Chen ◽  
Masood Younus ◽  
Jeremy Thompson ◽  
Ying Hu ◽  
John M. Hollander ◽  
...  

Cardiac ischemia-reperfusion (I/R) damages the electron transport chain (ETC), causing mitochondrial and cardiomyocyte injury. Reversible blockade of the ETC at complex I during ischemia protects the ETC and decreases cardiac injury. In the present study, we used an unbiased proteomic approach to analyze the extent of ETC-driven mitochondrial injury during I/R. Isolated-perfused mouse (C57BL/6) hearts underwent 25-min global ischemia (37°C) and 30-min reperfusion. In treated hearts, amobarbital (2 mM) was given for 1 min before ischemia to rapidly and reversibly block the ETC at complex I. Mitochondria were isolated at the end of reperfusion and subjected to unbiased proteomic analysis using tryptic digestion followed by liquid chromatography-mass spectrometry with isotope tags for relative and absolute quantification. Amobarbital treatment decreased cardiac injury and protected respiration. I/R decreased the content ( P < 0.05) of multiple mitochondrial matrix enzymes involved in intermediary metabolism compared with the time control. The contents of several enzymes in fatty acid oxidation were decreased compared with the time control. Blockade of ETC during ischemia largely prevented the decreases. Thus, after I/R, not only the ETC but also multiple pathways of intermediary metabolism sustain damage initiated by the ETC. If these damaged mitochondria persist in the myocyte, they remain a potent stimulus for ongoing injury and the transition to cardiomyopathy during prolonged reperfusion. Modulation of ETC function during early reperfusion is a key strategy to preserve mitochondrial metabolism and to decrease persistent mitochondria-driven injury during longer periods of reperfusion that predispose to ventricular dysfunction and heart failure. NEW & NOTEWORTHY Ischemia-reperfusion (I/R) damages mitochondria, which could be protected by reversible blockade of the electron transport chain (ETC). Unbiased proteomics with isotope tags for relative and absolute quantification analyzed mitochondrial damage during I/R and found that multiple enzymes in the tricarboxylic acid cycle, fatty acid oxidation, and ETC decreased, which could be prevented by ETC blockade. Strategic ETC modulation can reduce mitochondrial damage and cardiac injury.


2007 ◽  
Vol 102 (5) ◽  
pp. 1844-1849 ◽  
Author(s):  
Maria Fernström ◽  
Linda Bakkman ◽  
Michail Tonkonogi ◽  
Irina G. Shabalina ◽  
Zinaida Rozhdestvenskaya ◽  
...  

The hypothesis that ultraendurance exercise influences muscle mitochondrial function has been investigated. Athletes in ultraendurance performance performed running, kayaking, and cycling at 60% of their peak O2 consumption for 24 h. Muscle biopsies were taken preexercise (Pre-Ex), postexercise (Post-Ex), and after 28 h of recovery (Rec). Respiration was analyzed in isolated mitochondria during state 3 (coupled to ATP synthesis) and state 4 (noncoupled respiration), with fatty acids alone [palmitoyl carnitine (PC)] or together with pyruvate (Pyr). Electron transport chain activity was measured with NADH in permeabilized mitochondria. State 3 respiration with PC increased Post-Ex by 39 and 41% ( P < 0.05) when related to mitochondrial protein and to electron transport chain activity, respectively. State 3 respiration with Pyr was not changed ( P > 0.05). State 4 respiration with PC increased Post-Ex but was lower than Pre-Ex at Rec ( P < 0.05 vs. Pre-Ex). Mitochondrial efficiency [amount of added ADP divided by oxygen consumed during state 3 (P/O ratio)] decreased Post-Ex by 9 and 6% ( P < 0.05) with PC and PC + Pyr, respectively. P/O ratio remained reduced at Rec. Muscle uncoupling protein 3, measured with Western blotting, was not changed Post-Ex but tended to decrease at Rec ( P = 0.07 vs. Pre-Ex). In conclusion, extreme endurance exercise decreases mitochondrial efficiency. This will increase oxygen demand and may partly explain the observed elevation in whole body oxygen consumption during standardized exercise (+13%). The increased mitochondrial capacity for PC oxidation indicates plasticity in substrate oxidation at the mitochondrial level, which may be of advantage during prolonged exercise.


2003 ◽  
Vol 284 (2) ◽  
pp. H549-H558 ◽  
Author(s):  
Jacques Levraut ◽  
Hirotaro Iwase ◽  
Z.-H. Shao ◽  
Terry L. Vanden Hoek ◽  
Paul T. Schumacker

Ischemia-reperfusion injury induces cell death, but the responsible mechanisms are not understood. This study examined mitochondrial depolarization and cell death during ischemia and reperfusion. Contracting cardiomyocytes were subjected to 60-min ischemia followed by 3-h reperfusion. Mitochondrial membrane potential (ΔΨm) was assessed with tetramethylrhodamine methyl ester. During ischemia, ΔΨm decreased to 24 ± 5.5% of baseline, but no recovery was evident during reperfusion. Cell death assessed by Sytox Green was minimal during ischemia but averaged 66 ± 7% after 3-h reperfusion. Cyclosporin A, an inhibitor of mitochondrial permeability transition, was not protective. However, pharmacological antioxidants attenuated the fall in ΔΨm during ischemia and cell death after reperfusion and decreased lipid peroxidation as assessed with C11-BODIPY. Cell death was also attenuated when residual O2 was scavenged from the perfusate, creating anoxic ischemia. These results suggested that reactive oxygen species (ROS) were important for the decrease in ΔΨm during ischemia. Finally, 143B-ρ0 osteosarcoma cells lacking a mitochondrial electron transport chain failed to demonstrate a depletion of ΔΨm during ischemia and were significantly protected against cell death during reperfusion. Collectively, these studies identify a central role for mitochondrial ROS generation during ischemia in the mitochondrial depolarization and subsequent cell death induced by ischemia and reperfusion in this model.


2020 ◽  
Author(s):  
He Tai ◽  
Xiao-lin Jiang ◽  
Yue Li ◽  
Liang Kong ◽  
Si-cheng Yao ◽  
...  

Abstract Background: Acute myocardial injury (AMI), which is induced by renal ischemia-reperfusion (IR), is a significant cause of acute kidney injury (AKI)-related associated death. Obesity increases the severity and frequency of AMI and AKI. Tanshinone IIA (TIIA) combined with cyclosporine A (CsA) pretreatment was used to alleviate myocardial cell apoptosis induced by renal IR, and to determine whether TIIA combined with CsA would attenuate myocardial cell apoptosis by modulating mitochondrial function through the PI3K/Akt/Bad pathway in obese rats. Methods: Male rates were fed a high fat diet for 8 weeks to generate obesity. AKI was induced by 30 min of kidney ischemia followed 24 h of reperfusion. Obese rats were given TIIA (10 mg/kg·d) for 2 weeks and CsA (5 mg/kg) 30 min before renal IR. Related indicators were examined.Results: TIIA combined with CsA alleviated the pathohistological injury and apoptosis induced by renal IR in myocardial cells. In addition, TIIA combined with CsA improved cardiac function and decreased the serum myocardial enzyme spectrum in obese rats after renal IR. At the same time, TIIA combined with CsA improved mitochondrial function. Abnormal function of mitochondria was supported by decreases in the respiration controlling rate (RCR), intracellular adenosine triphosphate (ATP), oxygen consumption rate, and mitochondrial membrane potential (MMP), and increases in mitochondrial reactive oxygen species (ROS), opening of the mitochondrial permeability transition pore (mPTP), mitochondrial DNA damage, and mitochondrial respiratory chain complex enzymes (Ⅰ, Ⅱ, Ⅲ, Ⅳ, and Ⅴ). The injury of mitochondrial dynamic function was assessed by a decrease in Drp1, and increases in Mfn1 and Mfn2, and mitochondrial biogenesis injury was assessed by decreases in PGC-1, NRF1, and TFam. TIIA combined with CsA can attenuate apoptosis through modulating mitochondrial function through the PI3K/Akt/Bad pathway in obese rats.Conclusion: We used isolated mitochondria from rat myocardial tissues to demonstrate that myocardial mitochondrial dysfunction occurred along with renal IR to induce myocardial cell apoptosis; obesity aggravated apoptosis. TIIA combined with CsA attenuated myocardial cell apoptosis by modulating mitochondrial function through the PI3K/Akt/Bad pathway in obese rats.


Sign in / Sign up

Export Citation Format

Share Document