mitochondrial electron transport chain
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 57)

H-INDEX

50
(FIVE YEARS 6)

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Qin Yang ◽  
Ling Wang ◽  
Jiaye Liu ◽  
Wanlu Cao ◽  
Qiuwei Pan ◽  
...  

AbstractLiver cancer is one of the most common and lethal types of oncological disease in the world, with limited treatment options. New treatment modalities are desperately needed, but their development is hampered by a lack of insight into the underlying molecular mechanisms of disease. It is clear that metabolic reprogramming in mitochondrial function is intimately linked to the liver cancer process, prompting the possibility to explore mitochondrial biochemistry as a potential therapeutic target. Here we report that depletion of mitochondrial DNA, pharmacologic inhibition of mitochondrial electron transport chain (mETC) complex I/complex III, or genetic of mETC complex I restricts cancer cell growth and clonogenicity in various preclinical models of liver cancer, including cell lines, mouse liver organoids, and murine xenografts. The restriction is linked to the production of reactive oxygen species, apoptosis induction and reduced ATP generation. As a result, our findings suggest that the mETC compartment of mitochondria could be a potential therapeutic target in liver cancer.


2021 ◽  
Author(s):  
Alba Timon-Gomez ◽  
Alexandra L Scharr ◽  
Nicholas Y Wong ◽  
Erwin Ni ◽  
Arijit Roy ◽  
...  

The carotid body (CB) is the major chemoreceptor for blood oxygen in the control of ventilation in mammals, contributing to physiological adaptation to high altitude, pregnancy, and exercise, and its hyperactivity is linked to chronic conditions such as sleep-disorder breathing, hypertension, chronic heart failure, airway constriction, and metabolic syndrome. Upon acute hypoxia (PO2=100 mmHg to <80 mmHg), K+ channels on CB glomus cells are inhibited, causing membrane depolarization to trigger Ca+2 influx and neurotransmitter release that stimulates afferent nerves. A longstanding model proposes that the CB senses hypoxia through atypical mitochondrial electron transport chain (ETC) metabolism that is more sensitive to decreases in oxygen than other tissues. This model is supported by observations that ETC inhibition by pharmacology and gene knockout activates CB sensory activity and that smaller decreases in oxygen concentration inhibit ETC activity in CB cells compared to other cells. Determining the composition of atypical ETC subunits in the CB and their specific activities is essential to delineate molecular mechanisms underlying the mitochondrial hypothesis of oxygen sensing. Here, we identify HIGD1C, a novel hypoxia inducible gene domain factor isoform, as an ETC Complex IV (CIV) protein highly and selectively expressed in glomus cells that mediates acute oxygen sensing by the CB. We demonstrate that HIGD1C negatively regulates oxygen consumption by CIV and acts with the hypoxia-induced CIV subunit COX4I2 to enhance the sensitivity of CIV to hypoxia, constituting an important component of mitochondrial oxygen sensing in the CB. Determining how HIGD1C and other atypical CIV proteins expressed in the CB work together to confer exquisite oxygen sensing to the ETC will help us better understand how tissue- and condition-specific CIV subunits contribute to physiological function and disease and allow us to potentially target these proteins to treat chronic diseases characterized by CB dysfunction.


Author(s):  
Evelyn A. Bulkeley ◽  
Azarene Foutouhi ◽  
Kayla Wigney ◽  
Anthony C. Santistevan ◽  
Christine Collins ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Damanpreet Garcha ◽  
Susan P. Walker ◽  
Teresa M. MacDonald ◽  
Jon Hyett ◽  
Jessica Jellins ◽  
...  

AbstractFetal growth restriction is a leading cause of stillbirth that often remains undetected during pregnancy. Identifying novel biomarkers may improve detection of pregnancies at risk. This study aimed to assess syndecan-1 as a biomarker for small for gestational age (SGA) or fetal growth restricted (FGR) pregnancies and determine its molecular regulation. Circulating maternal syndecan-1 was measured in several cohorts; a large prospective cohort collected around 36 weeks’ gestation (n = 1206), a case control study from the Manchester Antenatal Vascular service (285 women sampled at 24–34 weeks’ gestation); two prospective cohorts collected on the day of delivery (36 + 3–41 + 3 weeks’ gestation, n = 562 and n = 405 respectively) and a cohort who delivered for preterm FGR (< 34 weeks). Circulating syndecan-1 was consistently reduced in women destined to deliver growth restricted infants and those delivering for preterm disease. Syndecan-1 secretion was reduced by hypoxia, and its loss impaired proliferation. Matrix metalloproteinases and mitochondrial electron transport chain inhibitors significantly reduced syndecan-1 secretion, an effect that was rescued by coadministration of succinate, a mitochondrial electron transport chain activator. In conclusion, circulating syndecan-1 is reduced among cases of term and preterm growth restriction and has potential for inclusion in multi-marker algorithms to improve detection of poorly grown fetuses.


2021 ◽  
Author(s):  
Glenda Guek Khim Oh ◽  
Brendan M O'Leary ◽  
Santiago Signorelli ◽  
A. Harvey Millar

A link between Pro catabolism and mitochondrial reactive oxygen species production has been established across eukaryotes and in plants increases in leaf respiration rates have been reported following Pro exposure. Here we investigated how alternative oxidases (AOXs) of the mitochondrial electron transport chain accommodate the large, atypical flux resulting from Pro catabolism and limit oxidative stress during Pro breakdown in mature Arabidopsis leaves. Following Pro treatment, AOX1a and AOX1d accumulate at transcript and protein levels, with AOX1d approaching the level of the typically dominant AOX1a isoform. We therefore sought to determine the function of both AOX isoforms under Pro respiring conditions. Oxygen consumption rate measurements in aox1a and aox1d leaves suggested these AOXs can functionally compensate for each other to establish enhanced AOX catalytic capacity in response to Pro. Generation of aox1a.aox1d lines showed complete loss of AOX proteins and activity upon Pro treatment, yet respiratory induction in response to Pro was still possible via the cytochrome pathway. However, aox1a.aox1d leaves suffered increased levels of oxidative stress and damage during Pro metabolism compared to WT or the single mutants. During recovery from salt stress, when high rates of Pro catabolism occur naturally, photosynthetic rates in aox1a.aox1d recovered slower than WT or the single aox lines, showing that both AOX1a and AOX1d are beneficial for cellular metabolism during Pro drawdown following osmotic stress. This work provides physiological evidence of a beneficial role for AOX1a but also the less studied AOX1d isoform in allowing safe catabolism of alternative respiratory substrates like Pro.


Sign in / Sign up

Export Citation Format

Share Document