scholarly journals CoCUN, a Novel Ubiquitin Binding Domain Identified in N4BP1

Biomolecules ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 284 ◽  
Author(s):  
Ridvan Nepravishta ◽  
Federica Ferrentino ◽  
Walter Mandaliti ◽  
Anna Mattioni ◽  
Janine Weber ◽  
...  

Ubiquitin binding domains (UBDs) are modular elements that bind non-covalently to ubiquitin and act as downstream effectors and amplifiers of the ubiquitination signal. With few exceptions, UBDs recognize the hydrophobic path centered on Ile44, including residues Leu8, Ile44, His68, and Val70. A variety of different orientations, which can be attributed to specific contacts between each UBD and surface residues surrounding the hydrophobic patch, specify how each class of UBD specifically contacts ubiquitin. Here, we describe the structural model of a novel ubiquitin-binding domain that we identified in NEDD4 binding protein 1 (N4BP1). By performing protein sequence analysis, mutagenesis, and nuclear magnetic resonance (NMR) spectroscopy of the 15N isotopically labeled protein, we demonstrate that a Phe-Pro motif in N4BP1 recognizes the canonical hydrophobic patch of ubiquitin. This recognition mode resembles the molecular mechanism evolved in the coupling of ubiquitin conjugation to endoplasmic-reticulum (ER) degradation (CUE) domain family, where an invariant proline, usually following a phenylalanine, is required for ubiquitin binding. Interestingly, this novel UBD, which is not evolutionary related to CUE domains, shares a 40% identity and 47% similarity with cullin binding domain associating with NEDD8 (CUBAN), a protein module that also recognizes the ubiquitin-like NEDD8. Based on these features, we dubbed the region spanning the C-terminal 50 residues of N4BP1 the CoCUN domain, for Cousin of CUBAN. By performing circular dichroism and 15N NMR chemical shift perturbation of N4BP1 in complex with ubiquitin, we demonstrate that the CoCUN domain lacks the NEDD8 binding properties observed in CUBAN. We also show that, in addition to mediating the interaction with ubiquitin and ubiquitinated substrates, both CUBAN and CoCUN are poly-ubiquitinated in cells. The structural and the functional characterization of this novel UBD can contribute to a deeper understanding of the molecular mechanisms governing N4BP1 function, providing at the same time a valuable tool for clarifying how the discrimination between ubiquitin and the highly related NEDD8 is achieved.

Author(s):  
Ridvan Nepravishta ◽  
Federica Ferrentino ◽  
Walter Mandaliti ◽  
Anna Mattioni ◽  
Luisa Castagnoli ◽  
...  

Ubiquitin binding domains (UBDs) are modular elements that bind non-covalently to ubiquitin and act as downstream effectors and amplifiers of the ubiquitination signal. With few exceptions, UBDs recognize the hydrophobic path centered on Ile44 (Leu-8, Ile-44, Val-70). Nevertheless, a variety of different orientations, which can be attributed to specific contacts between each UBD and surface residues surrounding the hydrophobic patch, specify how each class of UBD recognizes ubiquitin. Here, we describe the structure of a novel ubiquitin-binding domain that we identified in NEDD4 binding protein 1 (N4BP1). By performing protein sequence analysis, mutagenesis and NMR spectroscopy of the 15N isotopically labelled protein, we demonstrate that a Phe-Pro motif in N4BP1 recognizes the canonical hydrophobic patch of ubiquitin. This recognition mode resembles the molecular mechanism evolved in the CUE (Coupling of ubiquitin conjugation to ER degradation) domain family, where an invariant proline, usually following a phenylalanine, is required for binding to ubiquitin. Interestingly, the UBD of N4BP1 is evolutionary related to CUBAN (Cullin binding domain associating with NEDD8) (40% identity and 47% similarity), a protein module that also recognizes the ubiquitin-like NEDD8, which is the closest relative of ubiquitin (58% identity and 80% similarity). By performing circular dichroism and 15N NMR chemical shift perturbation of N4BP1 in complex with ubiquitin, we demonstrate that the UBD of N4BP1 lacks the NEDD8 binding properties observed in CUBAN and it recognizes the Ile44-centered patch of ubiquitin through a dedicated binding site, which share some of the features observed in the CUE domain family. Moreover, we show that, in addition to mediating the interaction with ubiquitin and ubiquitinated substrates, both the CUBAN and the UBD of N4BP1 are poly-ubiquitinated in cells. This modification is dependent on the presence of a functional domain. We believe that the structural and functional characterization of this novel UBD will allow a deeper understanding of the molecular mechanisms governing N4BP1 function, while at the same time providing a valuable tool for clarifying how the discrimination between ubiquitin and the highly related NEDD8 is achieved.


2018 ◽  
Author(s):  
Michael Lim ◽  
Joseph A. Newman ◽  
Hannah L. Williams ◽  
Hazel Aitkenhead ◽  
Opher Gileadi ◽  
...  

Ubiquitylation, the post-translational linkage of ubiquitin moieties to lysines in target proteins, helps regulate a myriad of biological processes. Ubiquitin, and sometimes ubiquitin-homology domains, are recognized by ubiquitin-binding domains, including CUE domains. CUE domains are thus generally thought to function exclusively by mediating interactions with ubiquitylated proteins. The chromatin remodeler, SMARCAD1, interacts with KAP1, a transcriptional corepressor. We show that the SMARCAD1-KAP1 interaction is direct and involves the first SMARCAD1 CUE domain (CUE1) and the RBCC domain of KAP1. A structural model of the minimal KAP1 RBCC-SMARCAD1 CUE1 complex based on X-ray crystallography analysis is presented. Remarkably, the CUE1 domain, which resembles a canonical CUE domain, recognizes 2 clusters of exposed hydrophobic residues on KAP1, but these are presented in the context of a coiled-coil domain, not in a structure resembling ubiquitin. Together, these data challenge the well-established dogma that CUE domains exclusively recognize the ubiquitin-fold.


2019 ◽  
Vol 21 (6) ◽  
pp. 731-742 ◽  
Author(s):  
Apostolos Polykratis ◽  
Arne Martens ◽  
Remzi Onur Eren ◽  
Yoshitaka Shirasaki ◽  
Mai Yamagishi ◽  
...  

2010 ◽  
Vol 38 (19) ◽  
pp. 6456-6465 ◽  
Author(s):  
Valérie Schmutz ◽  
Régine Janel-Bintz ◽  
Jérôme Wagner ◽  
Denis Biard ◽  
Naoko Shiomi ◽  
...  

2008 ◽  
Vol 10 (11) ◽  
pp. 1309-1317 ◽  
Author(s):  
Mads Gyrd-Hansen ◽  
Maurice Darding ◽  
Maria Miasari ◽  
Massimo M. Santoro ◽  
Lars Zender ◽  
...  

2010 ◽  
Vol 38 (5) ◽  
pp. 637-648 ◽  
Author(s):  
Roy Anindya ◽  
Pierre-Olivier Mari ◽  
Ulrik Kristensen ◽  
Hanneke Kool ◽  
Giuseppina Giglia-Mari ◽  
...  

2008 ◽  
Vol 284 (5) ◽  
pp. 2902-2907 ◽  
Author(s):  
Florence Cordier ◽  
Olivera Grubisha ◽  
François Traincard ◽  
Michel Véron ◽  
Muriel Delepierre ◽  
...  

2015 ◽  
Vol 58 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Yosua Adi Kristariyanto ◽  
Syed Arif Abdul Rehman ◽  
David G. Campbell ◽  
Nicholas A. Morrice ◽  
Clare Johnson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document