ubiquitin binding domain
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 25)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Mengwen Zhang ◽  
Jason M. Berk ◽  
Adrian B. Mehrtash ◽  
Jean Kanyo ◽  
Mark Hochstrasser

AbstractProtein ubiquitylation is an important post-translational modification affecting an wide range of cellular processes. Due to the low abundance of ubiquitylated species in biological samples, considerable effort has been spent on developing methods to purify and detect ubiquitylated proteins. We have developed and characterized a novel tool for ubiquitin detection and purification based on OtUBD, a high-affinity ubiquitin-binding domain derived from an Orientia tsutsugamushi deubiquitylase. We demonstrate that OtUBD can be used to purify both monoubiquitylated and polyubiquitylated substrates from yeast and human tissue culture samples and compare their performance with existing methods. Importantly, we found conditions for either selective purification of covalently ubiquitylated proteins or co-isolation of both ubiquitylated proteins and their interacting proteins. As a proof-of-principle for these newly developed methods, we profiled the ubiquitylome and ubiquitin-associated proteome of the yeast Saccharomyces cerevisiae. Combining OtUBD affinity purification with quantitative proteomics, we identified potential substrates for E3 ligases Bre1 and Pib1. OtUBD provides a versatile, efficient, and economical tool for ubiquitin researchers with specific advantages over other methods, such as in detecting monoubiquitylation or ubiquitin linkages to noncanonical sites.


2021 ◽  
Author(s):  
Swapneeta S Date ◽  
Peng Xu ◽  
Nathaniel L. Hepowit ◽  
Nicholas S. Diab ◽  
Jordan Best ◽  
...  

Deciphering mechanisms controlling SNARE localization within the Golgi complex is crucial to understanding protein trafficking patterns within the secretory pathway. SNAREs are also thought to prime COPI assembly to ensure incorporation of these essential cargoes into vesicles but the regulation of these events is poorly understood. Here we report roles for ubiquitin recognition by COPI in SNARE trafficking and in stabilizing interactions between Arf, COPI, and Golgi SNAREs. The ability of COPI to bind ubiquitin through its N-terminal WD repeat domain of β′COP or through an unrelated ubiquitin-binding domain (UBD) is essential for the proper localization of Golgi SNAREs Bet1 and Gos1. We find that COPI, the ArfGAP Glo3, and multiple Golgi SNAREs are ubiquitinated. Notably, the binding of Arf and COPI to Gos1 is markedly enhanced by ubiquitination of these components. Glo3 is thought to prime COPI-SNARE interactions; however, Glo3 is not enriched in the ubiquitin-stabilized SNARE-Arf-COPI complex but is instead enriched with COPI complexes that lack SNAREs. These results support a new model for how posttranslational modifications drive COPI priming events crucial for Golgi SNARE localization.


2021 ◽  
Author(s):  
Patrick M Lombardi ◽  
Sara Haile ◽  
Timur Rusanov ◽  
Rebecca Rodell ◽  
Rita Anoh ◽  
...  

Alkylation of DNA and RNA is a potentially toxic lesion that can result in mutations and cell death. In response to alkylation damage, K63-linked polyubiquitin chains are assembled that localize the ALKBH3-ASCC repair complex to damage sites in the nucleus. The protein ASCC2, a subunit of the ASCC complex, selectively binds K63-linked polyubiquitin chains using its CUE domain, a type of ubiquitin-binding domain that typically binds monoubiquitin and does not discriminate among different polyubiquitin linkage types. We report here that the ASCC2 CUE domain selectively binds K63-linked diubiquitin by contacting both the distal and proximal ubiquitin. Whereas the ASCC2 CUE domain binds the distal ubiquitin in a manner similar to that reported for other CUE domains bound to a single ubiquitin, the contacts with the proximal ubiquitin are unique to ASCC2. The N-terminal portion of the ASCC2 α1 helix, including residues E467 and S470, contributes to the binding interaction with the proximal ubiquitin of K63-linked diubiquitin. Mutation of residues within the N-terminal portion of the ASCC2 α1 helix decreases ASCC2 recruitment in response to DNA alkylation, supporting the functional significance of these interactions during the alkylation damage response.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1245
Author(s):  
Jing Feng ◽  
Yahui Gao ◽  
Kun Wang ◽  
Mingguo Jiang

Recently, Zuotin-related factor 1 (ZRF1), an epigenetic regulator, was found to be involved in transcriptional regulation. In animals and humans, ZRF1 specifically binds to monoubiquitinated histone H2A through a ubiquitin-binding domain and derepresses Polycomb target genes at the beginning of cellular differentiation. In addition, ZRF1 can work as a tumor suppressor. According to bioinformatics analysis, ZRF1 homologs are widely found in plants. However, the current studies on ZRF1 in higher plants are limited and few in-depth studies of its functions have been reported. In this review, we aim to summarize the key role of AtZRF1a/b in Arabidopsis thaliana growth and development, as well as the research progress in this field in recent years.


2021 ◽  
Author(s):  
Haibing Zhang ◽  
Ming Li ◽  
Yongbo Liu ◽  
Chengxian Xu ◽  
Qun Zhao ◽  
...  

Abstract ABIN1 is a polyubiquitin-binding protein known to regulate NF-κB activation and cell death signaling. Mutations in Abin1 can cause severe immune diseases in human, such as psoriasis, systemic lupus erythematosus, and systemic sclerosis. Here, we generated mice that disrupted the ubiquitin-binding domain of ABIN1 (Abin1UBD/UBD) died during later embryogenesis owing to TNFR1-mediated cell death, similar to Abin1−/− mice. Abin1UBD/UBD cells were rendered sensitive to TNF-α-induced apoptosis and necroptosis as the inhibition of ABIN1UBD and A20 recruitment to the TNF-RSC complex leads to attenuated RIPK1 deubiquitination. Accordingly, the embryonic lethality of Abin1UBD/UBD mice was rescued via crossing with RIPK1 kinase-dead mice (Ripk1K45A/K45A) or the co-deletion of Ripk3 and one allele of Fadd, but not by the loss of Ripk3 or Mlkl alone. Unexpectedly, Abin1UBD/UBD mice with the co-deletion of Ripk3 and both Fadd alleles died at E14.5. This death was caused by spontaneous RIPK1 ubiquitination-dependent multiple inflammatory cytokines over production and could be rescued by the co-deletion of Ripk1 or Tnfr1 combined with Ifnar. Collectively, these data demonstrate the importance of the ABIN1 UBD domain, which mediates the ABIN1-A20 axis, at limiting RIPK1 activation-dependent cell death during embryonic development. Furthermore, our findings reveal a previously unappreciated ubiquitin pathway that regulates cleavage of ubiquitinated RIPK1 by FADD/Casp8 to suppress spontaneous IKK𝜀/TBK1 activation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yasir Mohamud ◽  
Yuan Chao Xue ◽  
Huitao Liu ◽  
Chen Seng Ng ◽  
Amirhossein Bahreyni ◽  
...  

Enteroviruses (EVs) usurp the host autophagy pathway for pro-viral functions; however, the consequence of EV-induced diversion of autophagy on organelle quality control is poorly defined. Using coxsackievirus B3 (CVB3) as a model EV, we explored the interplay between EV infection and selective autophagy receptors, i.e., Tax1-binding protein 1/TRAF6-binding protein (T6BP), optineurin (OPTN), and nuclear dot 10 protein 52 (NDP52), known to be involved in regulating the clearance of damaged mitochondria, a process termed as mitophagy. Following CVB3 infection, we showed significant perturbations of the mitochondrial network coincident with degradation of the autophagy receptor protein T6BP, similar phenomenon to what we previously observed on NDP52. Notably, protein levels of OPTN are not altered during early infection and slightly reduced upon late infection. Cell culture studies revealed that T6BP degradation occurs independent of the function of host caspases and viral proteinase 3C, but requires the proteolytic activity of viral proteinase 2A. Further investigation identified the cleavage site on T6BP after the amino acid 621 that separates the C-terminal ubiquitin-binding domain from the other functional domains at the N-terminus. Genetic silencing of T6BP and OPTN results in the attenuation of CVB3 replication, suggesting a pro-viral activity for these two proteins. Finally, functional assessment of cleaved fragments from NDP52 and T6BP revealed abnormal binding affinity and impaired capacity to be recruited to depolarized mitochondria. Collectively, these results suggest that CVB3 targets autophagy receptors to impair selective autophagy.


2021 ◽  
Author(s):  
Mandeep K Mann ◽  
Carlos A Zepeda-Velazquez ◽  
Hector G Alvarez ◽  
Aiping Dong ◽  
Taira Kiyota ◽  
...  

USP5 is a deubiquitinase that has been implicated in a range of diseases, including cancer, but no USP5-targeting chemical probe has been reported to date. Here, we present the progression of a chemical series that occupies the C-terminal ubiquitin-binding site of a poorly characterized zinc-finger ubiquitin binding domain (ZnF-UBD) of USP5 and allosterically inhibits the catalytic activity of the enzyme. Systematic exploration of the structure-activity relationship, complemented with crystallographic characterization of the ZnF-UBD bound to multiple ligands, led to the identification of 64, which binds to the USP5 ZnF-UBD with a KD of 2.8 μM. 64 is selective over the structurally similar ZnF-UBD domain of HDAC6 and inhibits USP5 catalytic activity in vitro with an IC50 of 26 μM. This study provides a chemical and structural framework for the discovery of a chemical probe to delineate USP5 function in cells.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 744-744
Author(s):  
Eric Baehrecke

Abstract The clearance of organelles by autophagy is important for cell health, and defects in this process have been associated with age-associated degenerative disorders. Ubiquitination of proteins enables their recognition by cargo receptors that facilitate the delivery of both protein aggregates and organelles to forming autophagosomes for degradation. We have investigated developmentally programmed autophagy to identify novel regulators of organelle clearance. We identified an Atg7-independent autophagy program that is required for cell size reduction and clearance of mitochondria. We have used this system to screen for new factors regulate ubiquitin-dependent autophagy and clearance of organelles. We screened a collection of putative ubiquitin binding domain encoding genes, and identified the novel gene Vps13D. Vps13D is an essential gene that is necessary for autophagy, mitochondrial size, mitochondrial clearance, and is associated with human movement disorders. We have used genetics and biochemistry to identify factors that link Vps13D, mitochondrial biology and autophagy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Adrian J. Giovannone ◽  
Elena Reales ◽  
Pallavi Bhattaram ◽  
Sirpi Nackeeran ◽  
Adam B. Monahan ◽  
...  

AbstractSyntaxins are a family of membrane-anchored SNARE proteins that are essential components required for membrane fusion in eukaryotic intracellular membrane trafficking pathways. Syntaxins contain an N-terminal regulatory domain, termed the Habc domain that is not highly conserved at the primary sequence level but folds into a three-helix bundle that is structurally conserved among family members. The syntaxin Habc domain has previously been found to be structurally very similar to the GAT domain present in GGA family members and related proteins that are otherwise completely unrelated to syntaxins. Because the GAT domain has been found to be a ubiquitin binding domain we hypothesized that the Habc domain of syntaxins may also bind to ubiquitin. Here, we report that the Habc domain of syntaxin 3 (Stx3) indeed binds to monomeric ubiquitin with low affinity. This domain binds efficiently to K63-linked poly-ubiquitin chains within a narrow range of chain lengths but not to K48-linked poly-ubiquitin chains. Other syntaxin family members also bind to K63-linked poly-ubiquitin chains but with different chain length specificities. Molecular modeling suggests that residues of the GGA3-GAT domain known to be important for ionic and hydrophobic interactions with ubiquitin may have equivalent, conserved residues within the Habc domain of Stx3. We conclude that the syntaxin Habc domain and the GAT domain are both structurally and functionally related, and likely share a common ancestry despite sequence divergence. Binding of Ubiquitin to the Habc domain may regulate the function of syntaxins in membrane fusion or may suggest additional functions of this protein family.


Sign in / Sign up

Export Citation Format

Share Document