scholarly journals A Ubiquitin-Binding Domain in Cockayne Syndrome B Required for Transcription-Coupled Nucleotide Excision Repair

2010 ◽  
Vol 38 (5) ◽  
pp. 637-648 ◽  
Author(s):  
Roy Anindya ◽  
Pierre-Olivier Mari ◽  
Ulrik Kristensen ◽  
Hanneke Kool ◽  
Giuseppina Giglia-Mari ◽  
...  
2009 ◽  
Vol 285 (6) ◽  
pp. 3705-3712 ◽  
Author(s):  
Barbara Orelli ◽  
T. Brooke McClendon ◽  
Oleg V. Tsodikov ◽  
Tom Ellenberger ◽  
Laura J. Niedernhofer ◽  
...  

2020 ◽  
Vol 117 (31) ◽  
pp. 18608-18616 ◽  
Author(s):  
Mingrui Duan ◽  
Kathiresan Selvam ◽  
John J. Wyrick ◽  
Peng Mao

Transcription-coupled nucleotide excision repair (TC-NER) is an important DNA repair mechanism that removes RNA polymerase (RNAP)-stalling DNA damage from the transcribed strand (TS) of active genes. TC-NER deficiency in humans is associated with the severe neurological disorder Cockayne syndrome. Initiation of TC-NER is mediated by specific factors such as the human Cockayne syndrome group B (CSB) protein or its yeast homolog Rad26. However, the genome-wide role of CSB/Rad26 in TC-NER, particularly in the context of the chromatin organization, is unclear. Here, we used single-nucleotide resolution UV damage mapping data to show that Rad26 and its ATPase activity is critical for TC-NER downstream of the first (+1) nucleosome in gene coding regions. However, TC-NER on the transcription start site (TSS)-proximal half of the +1 nucleosome is largely independent of Rad26, likely due to high occupancy of the transcription initiation/repair factor TFIIH in this nucleosome. Downstream of the +1 nucleosome, the combination of low TFIIH occupancy and high occupancy of the transcription elongation factor Spt4/Spt5 suppresses TC-NER in Rad26-deficient cells. We show that deletion ofSPT4significantly restores TC-NER across the genome in arad26∆mutant, particularly in the downstream nucleosomes. These data demonstrate that the requirement for Rad26 in TC-NER is modulated by the distribution of TFIIH and Spt4/Spt5 in transcribed chromatin and Rad26 mainly functions downstream of the +1 nucleosome to remove TC-NER suppression by Spt4/Spt5.


2016 ◽  
Vol 44 (11) ◽  
pp. 5246-5255 ◽  
Author(s):  
Michael Ranes ◽  
Stefan Boeing ◽  
Yuming Wang ◽  
Franziska Wienholz ◽  
Hervé Menoni ◽  
...  

1999 ◽  
Vol 10 (7) ◽  
pp. 2119-2129 ◽  
Author(s):  
Marcus P. Cooper ◽  
Adayabalam S. Balajee ◽  
Vilhelm A. Bohr

The protein p21Cip1, Waf1, Sdi1 is a potent inhibitor of cyclin-dependent kinases (CDKs). p21 can also block DNA replication through its interaction with the proliferating cell nuclear antigen (PCNA), which is an auxiliary factor for polymerase δ. PCNA is also implicated in the repair resynthesis step of nucleotide excision repair (NER). Previous studies have yielded contradictory results on whether p21 regulates NER through its interaction with PCNA. Resolution of this controversy is of interest because it would help understand how DNA repair and replication are regulated. Hence, we have investigated the effect of p21 on NER both in vitro and in vivo using purified fragments of p21 containing either the CDK-binding domain (N terminus) or the PCNA binding domain (C terminus) of the protein. In the in vitro studies, DNA repair synthesis was measured in extracts from normal human fibroblasts using plasmids damaged by UV irradiation. In the in vivo studies, we used intact and permeabilized cells. The results show that the C terminus of the p21 protein inhibits NER both in vitro and in vivo. These are the first in vivo studies in which this question has been examined, and we demonstrate that inhibition of NER by p21 is not merely an artificial in vitro effect. A 50% inhibition of in vitro NER occurred at a 50:1 molar ratio of p21 C-terminus fragment to PCNA monomer. p21 differentially regulates DNA repair and replication, with repair being much less sensitive to inhibition than replication. Our in vivo results suggest that the inhibition occurs at the resynthesis step of the repair process. It also appears that preassembly of PCNA at repair sites mitigates the inhibitory effect of p21. We further demonstrate that the inhibition of DNA repair is mediated via binding of p21 to PCNA. The N terminus of p21 had no effect on DNA repair, and the inhibition of DNA repair by the C terminus of p21 was relieved by the addition of purified PCNA protein.


Sign in / Sign up

Export Citation Format

Share Document