scholarly journals Reflectance-Based Organic Pulse Meter Sensor for Wireless Monitoring of Photoplethysmogram Signal

Biosensors ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 87 ◽  
Author(s):  
Fahed Elsamnah ◽  
Anubha Bilgaiyan ◽  
Muhamad Affiq ◽  
Chang-Hoon Shim ◽  
Hiroshi Ishidai ◽  
...  

This paper compares the structural design of two organic biosensors that minimize power consumption in wireless photoplethysmogram (PPG) waveform monitoring. Both devices were fabricated on the same substrate with a red organic light-emitting diode (OLED) and an organic photodiode (OPD). Both were designed with a circular OLED at the center of the device surrounded by OPD. One device had an OLED area of 0.06 cm2, while the other device had half the area. The gap distance between the OLED and OPD was 1.65 mm for the first device and 2 mm for the second. Both devices had an OPD area of 0.16 cm2. We compared the power consumption and signal-to-noise ratio (SNR) of both devices and evaluated the PPG signal, which was successfully collected from a fingertip. The reflectance-based organic pulse meter operated successfully and at a low power consumption of 8 µW at 18 dB SNR. The device sent the PPG waveforms, via Bluetooth low energy (BLE), to a PC host at a maximum rate of 256 kbps data throughput. In the end, the proposed reflectance-based organic pulse meter reduced power consumption and improved long-term PPG wireless monitoring.

Biosensors ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 48 ◽  
Author(s):  
Fahed Elsamnah ◽  
Anubha Bilgaiyan ◽  
Muhamad Affiq ◽  
Chang-Hoon Shim ◽  
Hiroshi Ishidai ◽  
...  

This paper demonstrated a new design structure for minimizing the power consumption of a pulse meter. Monolithic devices composed of a red (625 nm) organic light-emitting diode (OLED) and an organic photodiode (OPD) were fabricated on the same substrate. Two organic devices were designed differently. One had a circle-shaped OLED in the center of the device and was surrounded by the OPD, while the other had the opposite structure. The external quantum efficiency (EQE) of the OLED and the OPD were 7% and 37%, respectively. We evaluated and compared the signal-to-noise ratio (SNR) of the photoplethysmogram (PPG) signal on different parts of the body and successfully acquired clear PPG signals at those positions, where the best signal was obtained from the fingertip at a SNR of about 62 dB. The proposed organic pulse meter sensor was operated successfully with a power consumption of 0.1 mW. Eventually, the proposed organic biosensor reduced the power consumption and improved the capability of the pulse meter for long-term use.


2018 ◽  
Vol 27 (14) ◽  
pp. 1850221
Author(s):  
Zunkai Huang ◽  
Li Tian ◽  
Hui Wang ◽  
Songlin Feng

In this paper, we propose a novel voltage-programmed pixel circuit with polysilicon thin–flim transistors (poly-Si TFTs) for active matrix organic light-emitting diode (AMOLED) displays, which consists of one programming transistor, one driving transistor, four switching transistors and two storage capacitors, respectively. Specifically, the proposed pixel circuit is able to not only efficiently compensate for the threshold variations of TFTs, but also largely suppresses the electrical degradations of the devices caused by the long-term electrical stress. Moreover, the mobility variation of the driving transistor can be compensated as well. The simulation has been performed by HSPICE, and results indicate that the average values of nonuniformities are, respectively, 7.3% as the threshold-voltage varies by [Formula: see text][Formula: see text]V and 2.1%, as the mobility of the driving transistor varies by [Formula: see text]%, both of which are much lower than that of the conventional two-transistor and one-capacitor (2T1C) pixel. Furthermore, since the OLED is reverse-biased during the nonemission phases, the lifetime of OLED will be extended naturally. As a consequence, the proposed pixel circuit can substantially improve the display performance.


PIERS Online ◽  
2007 ◽  
Vol 3 (6) ◽  
pp. 821-824 ◽  
Author(s):  
Chien-Chang Tseng ◽  
Liang-Wen Ji ◽  
Yu Sheng Tsai ◽  
Fuh-Shyang Juang

Sign in / Sign up

Export Citation Format

Share Document