scholarly journals Dislocation Mechanics of Metal Plasticity and Fracturing

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Jelena Živković ◽  
Vladimir Dunić ◽  
Vladimir Milovanović ◽  
Ana Pavlović ◽  
Miroslav Živković

Steel structures are designed to operate in an elastic domain, but sometimes plastic strains induce damage and fracture. Besides experimental investigation, a phase-field damage model (PFDM) emerged as a cutting-edge simulation technique for predicting damage evolution. In this paper, a von Mises metal plasticity model is modified and a coupling with PFDM is improved to simulate ductile behavior of metallic materials with or without constant stress plateau after yielding occurs. The proposed improvements are: (1) new coupling variable activated after the critical equivalent plastic strain is reached; (2) two-stage yield function consisting of perfect plasticity and extended Simo-type hardening functions. The uniaxial tension tests are conducted for verification purposes and identifying the material parameters. The staggered iterative scheme, multiplicative decomposition of the deformation gradient, and logarithmic natural strain measure are employed for the implementation into finite element method (FEM) software. The coupling is verified by the ‘one element’ example. The excellent qualitative and quantitative overlapping of the force-displacement response of experimental and simulation results is recorded. The practical significances of the proposed PFDM are a better insight into the simulation of damage evolution in steel structures, and an easy extension of existing the von Mises plasticity model coupled to damage phase-field.


2012 ◽  
Vol 11 (5) ◽  
pp. 1525-1546 ◽  
Author(s):  
Philip Barton ◽  
Evgeniy Romenski

AbstractIn this paper we show that entropy can be used within a functional for the stress relaxation time of solid materials to parametrise finite viscoplastic strain-hardening deformations. Through doing so the classical empirical recovery of a suitable irreversible scalar measure of work-hardening from the three-dimensional state parameters is avoided. The success of the proposed approach centres on determination of a rate-independent relation between plastic strain and entropy, which is found to be suitably simplistic such to not add any significant complexity to the final model. The result is sufficiently general to be used in combination with existing constitutive models for inelastic deformations parametrised by one-dimensional plastic strain provided the constitutive models are thermodynamically consistent. Here a model for the tangential stress relaxation time based upon established dislocation mechanics theory is calibrated for OFHC copper and subsequently integrated within a two-dimensional moving-mesh scheme. We address some of the numerical challenges that are faced in order to ensure successful implementation of the proposedmodel within a hydrocode. The approach is demonstrated through simulations of flyer-plate and cylinder impacts.


2000 ◽  
Vol 53 (10) ◽  
pp. 265-281 ◽  
Author(s):  
Michele Brocca ◽  
Zdeneˇk P. Bazˇant

The microplane model is a versatile constitutive model in which the stress-strain relations are defined in terms of vectors rather than tensors on planes of all possible orientations, called the microplanes, representative of the microstructure of the material. The microplane model with kinematic constraint has been successfully employed in the modeling of concrete, soils, ice, rocks, fiber composites and other quasibrittle materials. The microplane model provides a powerful and efficient numerical tool for the development and implementation of constitutive models for any kind of material. The paper presents a review of the background from which the microplane model stems, highlighting differences and similarities with other approaches. The basic structure of the microplane model is then presented, together with its extension to finite strain deformation. Three microplane models for metal plasticity are introduced and discussed. They are compared mutually and with the classical J2-flow theory for incremental plasticity by means of two examples. The first is the material response to a nonproportional loading path given by uniaxial compression into the plastic region followed by shear (typical of buckling and bifurcation problems). This example is considered in order to show the capability of the microplane model to represent a vertex on the yield surface. The second example is the ‘tube-squash’ test of a highly ductile steel tube: a finite element computation is run using two microplane models and the J2-flow theory. One of the microplane models appears to predict more accurately the final shape of the deformed tube, showing an improvement compared to the J2-flow theory even when the material is not subjected to abrupt changes in the loading path direction. This review article includes 114 references.


Sign in / Sign up

Export Citation Format

Share Document