scholarly journals Seismic Vulnerability Assessment and Strengthening of Heritage Timber Buildings: A Review

Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 661
Author(s):  
Amirhosein Shabani ◽  
Ali Alinejad ◽  
Mohammad Teymouri ◽  
André Nascimento Costa ◽  
Mahgol Shabani ◽  
...  

Recent studies highlight the potential impact of earthquakes on cultural heritage sites and monuments, which in turn yield significant adverse impacts on economies, politics, and societies. Several aspects such as building materials, structural responses, and restoration strategies must be considered in the conservation of heritage structures. Timber is an old organic construction material. Most of the historic timber structures were not designed to withstand seismic forces; therefore, the seismic vulnerability assessment of heritage timber structures in areas with high seismic hazard is essential for their conservation. For this purpose, different strategies for the numerical modeling of heritage timber buildings have been developed and validated against tests results. After performing seismic analysis using detailed analytical methods and predicting the susceptible structural components, strengthening techniques should be utilized to mitigate the risk level. To this aim, various methods using wooden components, composite material, steel components, SMA etc., have been utilized and tested and are reviewed in this study. There are still some gaps, such as full-scale numerical modeling of strengthened buildings and investigating the soil–structure interaction effects on the seismic behavior of buildings that should be investigated.

2021 ◽  
Author(s):  
Leslie Bonthron ◽  
Corey Beck ◽  
Alana Lund ◽  
Farida Mahmud ◽  
Xin Zhang ◽  
...  

With the recent identification of the Wabash Valley Seismic Zone in addition to the New Madrid Seismic Zone, Indiana’s Department of Transportation (INDOT) has become concerned with ensuring the adequate seismic performance of their bridge network. While INDOT made an effort to reduce the seismic vulnerability of newly-constructed bridges, many less recent bridges still have the potential for vulnerability. Analyzing these bridges’ seismic vulnerability is a vital task. However, developing a detailed dynamic model for every bridge in the state using information from structural drawings is rather tedious and time-consuming. In this study, we develop a simplified dynamic assessment procedure using readily-available information from INDOT’s Bridge Asset Management Program (BIAS), to rapidly identify vulnerable bridges throughout the state. Eight additional data items are recommended to be added into BIAS to support the procedure. The procedure is applied in the Excel file to create a tool, which is able to automatically implement the simplified bridge seismic analysis procedure. The simplified dynamic assessment procedure and the Excel tool enable INDOT to perform seismic vulnerability assessment and identify bridges more frequently. INDOT can prioritize these bridges for seismic retrofits and efficiently ensure the adequate seismic performance of their assets.


2010 ◽  
Vol 133-134 ◽  
pp. 741-746 ◽  
Author(s):  
Maria Adelaide Parisi ◽  
Mariapaola Riggio ◽  
Chiara Tardini ◽  
Maurizio Piazza

Synthetic methods for the diagnosis of structures and particularly for their vulnerability assessment rely on simplified calculations and visual inspection. Their effectiveness strongly depends on an accurate calibration of the procedure by which data are collected. A recent methodology for the seismic vulnerability assessment of timber roofs in historical buildings has been applied to the Thun Castle during a study for its rehabilitation. The purpose was twofold: testing and calibrating the procedure on a heritage structure and estimating the capability of the roof structure to resist seismic action, as required in a zone of low but not negligible seismicity.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 45
Author(s):  
Beatrice Faggiano ◽  
Giacomo Iovane ◽  
Andrea Gaspari ◽  
Eric Fournely ◽  
AbdelHamid Bouchair ◽  
...  

Italy is located in a very active seismic zone, and many earthquakes have marked the country, some of them in the recent past. In order to take adequate measures of seismic prevention and protection, in the last decades, the Italian Civil Protection Department (DPC) initiated a survey and introduced a specific form for the quick and/or post-seismic assessment of buildings. This is useful to obtain statistics on the types of structures and their vulnerability and a judgement on the damage, leading to a decision about the possibility of reuse and/or the level of retrofitting to be applied. Those activities have been developed since the beginning of 2000. This task is currently carried out by the Italian DPC-ReLUIS project research, line WP2 on the inventory of building structures, setting up the CARTIS form for any structural type, like masonry, reinforced concrete, precast concrete, steel, and timber structures, the latter being mainly related to large span buildings, extensively used in Italy. In this context, the paper presents the first draft of the CARTIS form for large span timber structures that provides a general description for typical structural schemes, through the singular points commonly considered as seismic structural vulnerabilities. Moreover, the statistics on timber large span structures based on a sample of 10 buildings is presented.


2017 ◽  
Vol 12 (1) ◽  
pp. 36-46 ◽  
Author(s):  
Gian Paolo Campostrini ◽  
Sabrina Taffarel ◽  
Giulia Bettiol ◽  
Maria Rosa Valluzzi ◽  
Francesca Da Porto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document