scholarly journals Recent Advances of Pd/C-Catalyzed Reactions

Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1078
Author(s):  
Zhenjun Mao ◽  
Haorui Gu ◽  
Xufeng Lin

The Pd/C-catalyzed reactions, including reduction reactions and cross-coupling reactions, play an irreplaceable role in modern organic synthesis. Compared to the homogeneous palladium catalyst system, the heterogeneous Pd/C catalyst system offers an alternative protocol that has particular advantages and applications. Herein, a review on Pd/C-catalyzed reactions is presented. Both the advances in Pd/C-catalyzed methodologies and the application of Pd/C-catalysis in total synthesis are covered in this review.

2016 ◽  
Vol 40 (6) ◽  
pp. 5135-5142 ◽  
Author(s):  
Motakatla Venkata Krishna Reddy ◽  
Peddiahgari Vasu Govardhana Reddy ◽  
Cirandur Suresh Reddy

Consecutive Suzuki–Miyaura and Sonogashira cross coupling reactions catalyzed by a new competent palladium catalyst PEPPSI-SONO-SP2 under mild and green reaction conditions.


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 296 ◽  
Author(s):  
Janwa El-Maiss ◽  
Tharwat Mohy El Dine ◽  
Chung-Shin Lu ◽  
Iyad Karamé ◽  
Ali Kanj ◽  
...  

Boron chemistry has evolved to become one of the most diverse and applied fields in organic synthesis and catalysis. Various valuable reactions such as hydroborylations and Suzuki–Miyaura cross-couplings (SMCs) are now considered as indispensable methods in the synthetic toolbox of researchers in academia and industry. The development of novel sterically- and electronically-demanding C(sp3)–Boron reagents and their subsequent metal-catalyzed cross-couplings attracts strong attention and serves in turn to expedite the wheel of innovative applications of otherwise challenging organic adducts in different fields. This review describes the significant progress in the utilization of classical and novel C(sp3)–B reagents (9-BBN and 9-MeO-9-BBN, trifluoroboronates, alkylboranes, alkylboronic acids, MIDA, etc.) as coupling partners in challenging metal-catalyzed C(sp3)–C(sp2) cross-coupling reactions, such as B-alkyl SMCs after 2001.


Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 213 ◽  
Author(s):  
Lou Rocard ◽  
Piétrick Hudhomme

Palladium-catalyzed cross-coupling reactions are nowadays essential in organic synthesis for the construction of C–C, C–N, C–O, and other C-heteroatom bonds. The 2010 Nobel Prize in Chemistry to Richard F. Heck, Ei-ichi Negishi, and Akira Suzuki was awarded for the discovery of these reactions. These great advances for organic chemists stimulated intense research efforts worldwide dedicated to studying these reactions. Among them, the Suzuki–Miyaura coupling (SMC) reaction, which usually involves an organoboron reagent and an organic halide or triflate in the presence of a base and a palladium catalyst, has become, in the last few decades, one of the most popular tools for the creation of C–C bonds. In this review, we present recent progress concerning the SMC reaction with the original use of nitroarenes as electrophilic coupling partners reacting with the organoboron reagent.


2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


2020 ◽  
Vol 24 ◽  
Author(s):  
Teng Wang ◽  
Zongrui Liu ◽  
Songlin Wang ◽  
Esmail Vessally

The article has been withdrawn at the request of editor of the journal Current Organic Chemistry: Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused. The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.


2015 ◽  
Vol 10 (10) ◽  
pp. 2234-2239 ◽  
Author(s):  
Bojana Višić ◽  
Hagai Cohen ◽  
Ronit Popovitz-Biro ◽  
Reshef Tenne ◽  
Viacheslav I. Sokolov ◽  
...  

Synthesis ◽  
2021 ◽  
Author(s):  
Felipe C. Demidoff ◽  
Leandro L. de Carvalho ◽  
Eduardo José P. Rodrigues Filho ◽  
Andréa Luzia F. de Souza ◽  
Chaquip D. Netto

AbstractFunctionalized 1,4-naphthoquinones have been employed as versatile synthons in organic synthesis, in addition to presenting a large array of biological activities. Herein, the applications of 2-amino-/ acetylamino-substituted 3-iodo-1,4-naphthoquinones in cross-coupling reactions are described to successfully afford sixteen novel 3-styryl-1,4-naphthoquinones (amino-stilbene-quinone hybrids) and four 3-alkynyl-1,4-naphthoquinone in overall good yields. Interestingly, the alkynylated derivatives could be obtained from ligand- and Pd-free CuI-mediated cross-coupling reactions, after extensive investigations to exclude Pd as a co-catalyst. Lastly, the desilanized terminal alkyne was subjected to click chemistry reactions to give two novel triazole-1,4-naphthoquinone hybrids.


Science ◽  
2019 ◽  
Vol 364 (6439) ◽  
pp. eaav9713 ◽  
Author(s):  
Asik Hossain ◽  
Aditya Bhattacharyya ◽  
Oliver Reiser

Visible-light photoredox catalysis offers a distinct activation mode complementary to thermal transition metal catalyzed reactions. The vast majority of photoredox processes capitalizes on precious metal ruthenium(II) or iridium(III) complexes that serve as single-electron reductants or oxidants in their photoexcited states. As a low-cost alternative, organic dyes are also frequently used but in general suffer from lower photostability. Copper-based photocatalysts are rapidly emerging, offering not only economic and ecological advantages but also otherwise inaccessible inner-sphere mechanisms, which have been successfully applied to challenging transformations. Moreover, the combination of conventional photocatalysts with copper(I) or copper(II) salts has emerged as an efficient dual catalytic system for cross-coupling reactions.


Sign in / Sign up

Export Citation Format

Share Document