scholarly journals Recent Developments in the Suzuki–Miyaura Reaction Using Nitroarenes as Electrophilic Coupling Reagents

Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 213 ◽  
Author(s):  
Lou Rocard ◽  
Piétrick Hudhomme

Palladium-catalyzed cross-coupling reactions are nowadays essential in organic synthesis for the construction of C–C, C–N, C–O, and other C-heteroatom bonds. The 2010 Nobel Prize in Chemistry to Richard F. Heck, Ei-ichi Negishi, and Akira Suzuki was awarded for the discovery of these reactions. These great advances for organic chemists stimulated intense research efforts worldwide dedicated to studying these reactions. Among them, the Suzuki–Miyaura coupling (SMC) reaction, which usually involves an organoboron reagent and an organic halide or triflate in the presence of a base and a palladium catalyst, has become, in the last few decades, one of the most popular tools for the creation of C–C bonds. In this review, we present recent progress concerning the SMC reaction with the original use of nitroarenes as electrophilic coupling partners reacting with the organoboron reagent.

2020 ◽  
Vol 16 (8) ◽  
pp. 1105-1142 ◽  
Author(s):  
Shalu Sain ◽  
Sonika Jain ◽  
Manish Srivastava ◽  
Rajendra Vishwakarma ◽  
Jaya Dwivedi

: Palladium-catalyzed cross-coupling reactions have gained a continuously growing interest of synthetic organic chemists. The present review gives a brief account of applications of the palladium-catalyzed cross-coupling reactions in comprehensive synthesis, viz., the Heck, Stille, Suzuki–Miyaura, Negishi, Sonogashira, Buchwald–Hartwig, Ullmann and the Oxidative, decarboxylative cross-coupling reactions, with particular emphasis on the synthesis of heterocyclic compounds.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1078
Author(s):  
Zhenjun Mao ◽  
Haorui Gu ◽  
Xufeng Lin

The Pd/C-catalyzed reactions, including reduction reactions and cross-coupling reactions, play an irreplaceable role in modern organic synthesis. Compared to the homogeneous palladium catalyst system, the heterogeneous Pd/C catalyst system offers an alternative protocol that has particular advantages and applications. Herein, a review on Pd/C-catalyzed reactions is presented. Both the advances in Pd/C-catalyzed methodologies and the application of Pd/C-catalysis in total synthesis are covered in this review.


2020 ◽  
Author(s):  
Baojian Xiong ◽  
Yue Li ◽  
Yin Wei ◽  
Søren Kramer ◽  
Zhong Lian

Cross-coupling between substrates that can be easily derived from phenols is highly attractive due to the abundance and low cost of phenols. Here, we report a dual nickel/palladium-catalyzed reductive cross-coupling between aryl tosylates and aryl triflates; both substrates can be accessed in just one step from readily available phenols. The reaction has a broad functional group tolerance and substrate scope (>60 examples). Furthermore, it displays low sensitivity to steric effects demonstrated by the synthesis of a 2,2’disubstituted biaryl and a fully substituted aryl product. The widespread presence of phenols in natural products and pharmaceuticals allow for straightforward late-stage functionalization, illustrated with examples such as Ezetimibe and tyrosine. NMR spectroscopy and DFT calculations indicate that the nickel catalyst is responsible for activating the aryl triflate, while the palladium catalyst preferentially reacts with the aryl tosylate.


2005 ◽  
Vol 70 (10) ◽  
pp. 1696-1708 ◽  
Author(s):  
Magnus Besev ◽  
Christof Brehm ◽  
Alois Fürstner

A concise route to the common polyketide fragment5of crocacin A-D (1-4) is presented which has previously been converted into all members of this fungicidal and cytotoxic family of dipeptidic natural products by various means. Our synthesis features asyn-selective titanium aldol reaction controlled by a valinol-derived auxiliary, a zinc-mediated, palladium-catalyzedanti-selective addition of propargyl mesylate10to the chiral aldehyde9, as well as a comparison of palladium-catalyzed Stille and Suzuki cross-coupling reactions for the formation of the diene moiety of the target.


Synthesis ◽  
2021 ◽  
Author(s):  
Fabiane Gritzenco ◽  
Jean Carlo Kazmierczak ◽  
Thiago Anjos ◽  
Adriane Sperança ◽  
Maura Luise Bruckchem Peixoto ◽  
...  

This manuscript portrays the CuI-catalyzed Csp-chalcogen bond formation through cross-coupling reactions of propynyl esters and diorganyl dichalcogenides by using DMSO as solvent, at room temperature, under base-free and open-to-air atmosphere. Generally, the reactions have proceeded very smoothly, being tolerant to range of substituents present in both substrates, affording the novel 3-(organochalcogenyl)prop-2-yn-1-yl esters in moderate to good yields. Noteworthy, the 3-(butylselanyl)prop-2-yn-1-yl benzoate proved to be useful as synthetic precursor in palladium-catalyzed Suzuki and Sonogashira type cross-coupling reactions by replacing the carbon-chalcogen bond by new carbon-carbon bonds. Moreover, the 3-(phenylselanyl)prop-2-yn-1-yl benzoate has shown promising in vitro activity against glioblastoma cancer cells.


Sign in / Sign up

Export Citation Format

Share Document