scholarly journals Intramolecular Hydrogen Bonds in Selected Aromatic Compounds: Recent Developments

Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 909
Author(s):  
Aneta Jezierska ◽  
Peter M. Tolstoy ◽  
Jarosław J. Panek ◽  
Aleksander Filarowski

A review of intramolecular hydrogen bonding in ortho-hydroxyaryl Schiff bases, ortho-hydroxyaryl Mannich bases, dipyrrins, ortho-hydroxyaryl ketones, ortho-hydroxyaryl amides, and 4-Bora-3a,4a-diaza-s-indacene (BODIPY) dyes with tautomeric sensors as substituents is presented in this paper. Ortho-hydroxy Schiff and Mannich base derivatives are known as model molecules for analysing the properties of intramolecular hydrogen bonding. The compounds under discussion possess physicochemical features modulated by the presence of strong intramolecular hydrogen bonds. The equilibrium between intra- and inter-molecular hydrogen bonds in BODIPY is discussed. Therefore, the summary can serve as a knowledge compendium of the influence of the hydrogen bond on the molecular properties of aromatic compounds.

Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 602-609 ◽  
Author(s):  
Se Wang ◽  
Zhuang Wang ◽  
Ce Hao

AbstractThe time-dependent density functional theory (TDDFT) method was performed to investigate the excited-state intramolecular double proton transfer (ESIDPT) reaction of calix[4]arene (C4A) and the role of the intramolecular hydrogen bonds in the ESIDPT process. The geometries of C4A in the ground state and excited states (S1, S2 and T1) were optimized. Four intramolecular hydrogen bonds formed in the C4A are strengthened or weakened in the S2 and T1 states compared to those in the ground state. Interestingly, upon excitation to the S1 state of C4A, two protons H1 and H2 transfer along the two intramolecular hydrogen bonds O1-H1···O2 and O2-H2···O3, while the other two protons do not transfer. The ESIDPT reaction breaks the primary symmetry of C4A in the ground state. The potential energy curves of proton transfer demonstrate that the ESIDPT process follows the stepwise mechanism but not the concerted mechanism. Findings indicate that intramolecular hydrogen bonding is critical to the ESIDPT reactions in intramolecular hydrogen-bonded systems.


Sign in / Sign up

Export Citation Format

Share Document