double proton transfer
Recently Published Documents


TOTAL DOCUMENTS

340
(FIVE YEARS 43)

H-INDEX

47
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Manjusha Boda ◽  
G Naresh Patwari

Carboxylic acids form exceptionally stable dimers and have been used to model proton and double proton transfer processes. The stabilization energies of the carboxylic acid dimers are very weakly dependent on the nature of the substitution. However, the electric field experienced by the OH group of a particular carboxylic acid is dependent more on the nature of the substitution on the dimer partner. In general, the electric field was higher when the partner was substituted with electron-donating group and lower with electron-withdrawing substituent on the partner. The Stark tuning rate (∆μ) of the O–H stretching vibrations calculated at the MP2/aug-cc-pVDZ level was found to be weakly dependent on the nature of substitution on the carboxylic acid. The average Stark tuning rate of O–H stretching vibrations of a particular carboxylic acid when paired with other acids was 5.7 cm–1 (MV cm–1)–1, while the corresponding average Stark tuning rate of the partner acids due to a particular carboxylic acid was 21.9 cm–1 (MV cm–1)–1. The difference in the Stark tuning rate is attributed to the primary and secondary effects of substitution on the carboxylic acid. The average Stark tuning rate for the anharmonic O–D frequency shifts is about 40-50% higher than the corresponding harmonic O–D frequency shifts calculated at B3LYP/aug-cc-pVDZ level, much greater than the typical scaling factors used, indicating the strong anharmonicity of O–H/O–D oscillators in carboxylic acid dimers. Finally, the linear correlation observed between pKa and the electric field was used to estimate the pKa of fluoroformic acid to be around 0.9.


Author(s):  
Xiumin Liu ◽  
Heyao Yuan ◽  
Yuxi Wang ◽  
Yaping Tao ◽  
Yi Wang ◽  
...  

In this paper, density functional theory (DFT) and time-dependent DFT (TDDFT) methods were used to investigate substituent effects and excited-state intramolecular double-proton transfer (ESIDPT) in 1, 3-bis (2-pyridylimino)-4, 7-dihydroxyisoindole (BPI–OH) and its derivatives. The results of a systematic study of the substituent effects of electron-withdrawing groups (F, Cl and Br) on the adjacent sites of the benzene ring were used to regulate the photophysical properties of the molecules and the dynamics of the proton-transfer process. Geometric structure comparisons and infrared (IR) spectroscopic analysis confirmed that strengthening of the intramolecular hydrogen bond in the first excited state (S1) facilitated proton transfer. Functional analysis of the reduced density gradient confirmed these conclusions. Double-proton transfer in BPI–OH is considered to occur in two steps, i.e., BPI–OH (N) [Formula: see text] BPI–OH (T1) [Formula: see text] BPI–OH (T2), in the ground state (S0) and the S1 state. The potential-energy curves (PECs) for two-step proton transfer were scanned for both the S0 and S1 states to clarify the mechanisms and pathways of proton transfer. The stepwise path in which two protons are consecutively transferred has a low energy barrier and is more rational and favorable. This study shows that the presence or absence of coordinating groups, and the type of coordinating group, affect the hydrogen-bond strength. A coordinating group enhances hydrogen-bond formation, i.e., it promotes excited-state intramolecular proton transfer (ESIPT).


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3802
Author(s):  
Dominik Kurzydłowski ◽  
Taisiia Chumak ◽  
Jakub Rogoża ◽  
Arkadiusz Listkowski

1H-pyrrolo[3,2-h]qinoline (PQ) and 2-(2′-pyridyl)pyrrole (PP) are important systems in the study of proton-transfer reactions. These molecules possess hydrogen bond donor (pyrrole) and acceptor (pyridine) groups, which leads to the formation of cyclic dimers in their crystals. Herein, we present a joint experimental (Raman scattering) and computational (DFT modelling) study on the high-pressure behaviour of PQ and PP molecular crystals. Our results indicate that compression up to 10 GPa (100 kbar) leads to considerable strengthening of the intermolecular hydrogen bond within the cyclic dimers. However, the intramolecular N–H∙∙∙N interaction is either weakly affected by pressure, as witnessed in PQ, or weakened due to compression-induced distortions of the molecule, as was found for PP. Therefore, we propose that the compression of these systems should facilitate double proton transfer within the cyclic dimers of PQ and PP, while intramolecular transfer should either remain unaffected (for PQ) or weakened (for PP).


Sign in / Sign up

Export Citation Format

Share Document