scholarly journals Predicted Mutual Solubilities in Water + C5-C12 Hydrocarbon Systems. Results at 298 K

2021 ◽  
Vol 5 (4) ◽  
pp. 89
Author(s):  
Marian Góral ◽  
Paweł Oracz

Mutual solubilities of water with n-alkanes, cycloalkanes, iso-alkanes (branched alkanes), alkenes, alkynes, alkadienes, and alkylbenzenes were calculated at 298 K for 153 systems not yet measured. Recommended data for 64 systems reported in the literature were compared with the predicted values. The solubility of the hydrocarbons in water was calculated with a thermodynamically based equation, which depends on specific properties of the hydrocarbon. The concentration in the second coexisting liquid phase (water in hydrocarbon) was calculated using liquid-liquid equilibrium with an equation of state, which takes into account the self-association of water and co-association of water with π-bonds of the hydrocarbons.

2019 ◽  
Vol 63 (2) ◽  
Author(s):  
Milton Medeiros ◽  
Benjamin Cortés Sánchez ◽  
David Cruz Garcia

The Cubic Two-State equation of state was employed to correlate the measured mutual solubilities of water and 23 chlorinated hydrocarbons (CHCs). Following the scheme framework laid out by Medeiros and Brindis-Flores, a nonquadratic Kabadi-Danner type mixing rule is used, where the water-water dispersive parameter is corrected due to the presence of a hydrophobic solute. The model’s three parameters were adjusted to correlate experimental binary liquid-liquid equilibrium data to relatively high accuracy. The observed minimum in CHC solubility in water near ambient conditions is reproduced reliably. Overall deviations from experimental data were 7.8% for CHC solubility in the aqueous phase and 13% for water solubility in the organic phase.


1983 ◽  
Vol 48 (1) ◽  
pp. 192-198 ◽  
Author(s):  
Tomáš Boublík

The excess entropy of mixing of mixtures of hard spheres and spherocylinders is determined from an equation of state of hard convex bodies. The obtained dependence of excess entropy on composition was used to find the accuracy of determining ΔSE from relations employed for the correlation and prediction of vapour-liquid equilibrium. Simple rules were proposed for establishing the mean parameter of nonsphericity for mixtures of hard bodies of different shapes allowing to describe the P-V-T behaviour of solutions in terms of the equation of state fo pure substance. The determination of ΔSE by means of these rules is discussed.


Sign in / Sign up

Export Citation Format

Share Document