excess entropy
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 30)

H-INDEX

30
(FIVE YEARS 3)

Author(s):  
Sosuke Ito

Abstract We discuss a relationship between information geometry and the Glansdorff-Prigogine criterion for stability. For the linear master equation, we found a relation between the line element and the excess entropy production rate. This relation leads to a new perspective of stability in a nonequilibrium steady-state. We also generalize the Glansdorff-Prigogine criterion for stability based on information geometry. Our information-geometric criterion for stability works well for the nonlinear master equation, where the Glansdorff-Prigogine criterion for stability does not work well. We derive a trade-off relation among the fluctuation of the observable, the mean change of the observable, and the intrinsic speed. We also derive a novel thermodynamic trade-off relation between the excess entropy production rate and the intrinsic speed. These trade-off relations provide a physical interpretation of our information-geometric criterion for stability. We illustrate our information-geometric criterion for stability by an autocatalytic reaction model, where dynamics are driven by a nonlinear master equation.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012079
Author(s):  
Fotis Venetsanos ◽  
Stefanos D. Anogiannakis ◽  
Doros N. Theodorou

Abstract The accurate prediction of the thermodynamic properties of oligomeric blends and, in general, binary liquid mixtures from atomistic simulations is a challenging task. In this work we develop a methodology for the full thermodynamic analysis of oligomeric blends and the extraction of the Flory-Huggins interaction parameter from the Gibbs energy of mixing, combining Flory-Huggins thermodynamics with Kirkwood-Buff theory of solutions. We perform a series of Molecular Dynamics (MD) simulations of 2-methylpentane/n-heptane mixtures, at various mole fractions. Firstly we validate the forcefield we apply in our MD simulations, comparing the density and excess volume we obtain against the corresponding experimental estimates found in the literature. Then we calculate the Kirkwood-Buff integrals in the isothermal-isobaric (NpT) ensemble, applying the particle fluctuations method, and we extract the component activity coefficients, the excess Gibbs energy, the excess enthalpy, and the excess entropy of mixing as functions of the mole fraction. Finally we calculate the Flory-Huggins interaction parameter χ by interpreting the Gibbs energy of mixing in the framework of Flory-Huggins theory, and explore its dependence on composition. All results are compared against experimental measurements in order to evaluate our methodology. Agreement is found to be very good.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
S. A. Khrapak ◽  
A. G. Khrapak

Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1171
Author(s):  
Premkumar Leishangthem ◽  
Faizyab Ahmad ◽  
Shankar P. Das

We study the role of disorder in producing the metastable states in which the extent of mass localization is intermediate between that of a liquid and a crystal with long-range order. We estimate the corresponding entropy with the coarse-grained description of a many-particle system used in the classical density functional model. We demonstrate that intermediate localization of the particles results in a change of the entropy from what is obtained from a microscopic approach using for sharply localized vibrational modes following a Debye distribution. An additional contribution is included in the density of vibrational states g(ω) to account for this excess entropy. A corresponding peak in g(ω)/ω2 vs. frequency ω matches the characteristic boson peak seen in amorphous solids. In the present work, we also compare the shear modulus for the inhomogeneous solid having localized density profiles with the corresponding elastic response for the uniform liquid in the limit of high frequencies.


2021 ◽  
Vol 11 (16) ◽  
pp. 7413
Author(s):  
Maurício J. Ferreira ◽  
Nuno A. Silva ◽  
Armando N. Pinto ◽  
Nelson J. Muga

Quantum random number generators (QRNGs) are currently in high demand across a large number of cryptographic applications as secure sources of true randomness. In this work, we characterize the conditions from which randomness can be extracted in a QRNG based on homodyne measurements of vacuum fluctuations by assessing the impact of experimental limitations, such as the digitizer resolution or the presence of excess local oscillator (LO) noise due to an unbalanced detection. Moreover, we propose an estimation method to quantify the excess entropy contribution introduced by an unbalanced detection and analyze the implementation of the post-processing algorithm. Finally, we submitted the generated numbers to a set of statistical tests to assess the quality of its output randomness and verified that it passes the standard libraries.


2021 ◽  
Author(s):  
Kevin Galloway ◽  
Erin Teich ◽  
Xiaoguang Ma ◽  
Christoph Kammer ◽  
Ian Graham ◽  
...  

Abstract A fundamental challenge for disordered solids is predicting macroscopic yield from the microscopic arrangements of constituent particles. Yield is accompanied by a sudden and large increase in energy dissipation due to the onset of plastic rearrangements. This suggests that one path to understanding bulk rheology is to map particle configurations to their mode of deformation. Here, we perform laboratory experiments and numerical simulations that are designed to do just that: 2D dense colloidal systems are subjected to oscillatory shear, and particle trajectories and bulk rheology are measured. We quantify particle microstructure using excess entropy. Results reveal a direct relation between excess entropy and energy dissipation, that is insensitive to the nature of interactions among particles. We use this relation to build a physically-informed model that connects rheology to microstructure. Our findings suggest a framework for tailoring the rheological response of disordered materials by tuning microstructural properties.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1746
Author(s):  
Mahajabin Rahman ◽  
Benjamin M. G. D. Carter ◽  
Shibu Saw ◽  
Ian M. Douglass ◽  
Lorenzo Costigliola ◽  
...  

In the condensed liquid phase, both single- and multicomponent Lennard–Jones (LJ) systems obey the “hidden-scale-invariance” symmetry to a good approximation. Defining an isomorph as a line of constant excess entropy in the thermodynamic phase diagram, the consequent approximate isomorph invariance of structure and dynamics in appropriate units is well documented. However, although all measures of the structure are predicted to be isomorph invariant, with few exceptions only the radial distribution function (RDF) has been investigated. This paper studies the variation along isomorphs of the nearest-neighbor geometry quantified by the occurrence of Voronoi structures, Frank–Kasper bonds, icosahedral local order, and bond-orientational order. Data are presented for the standard LJ system and for three binary LJ mixtures (Kob–Andersen, Wahnström, NiY2). We find that, while the nearest-neighbor geometry generally varies significantly throughout the phase diagram, good invariance is observed along the isomorphs. We conclude that higher-order structural correlations are no less isomorph invariant than is the RDF.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 234
Author(s):  
Donald M. Nicholson ◽  
C. Y. Gao ◽  
Marshall T. McDonnell ◽  
Clifton C. Sluss ◽  
David J. Keffer

We prove that, within the class of pair potential Hamiltonians, the excess entropy is a universal, temperature-independent functional of the density and pair correlation function. This result extends Henderson’s theorem, which states that the free energy is a temperature dependent functional of the density and pair correlation. The stationarity and concavity of the excess entropy functional are discussed and related to the Gibbs–Bugoliubov inequality and to the free energy. We apply the Kirkwood approximation, which is commonly used for fluids, to both fluids and solids. Approximate excess entropy functionals are developed and compared to results from thermodynamic integration. The pair functional approach gives the absolute entropy and free energy based on simulation output at a single temperature without thermodynamic integration. We argue that a functional of the type, which is strictly applicable to pair potentials, is also suitable for first principles calculation of free energies from Born–Oppenheimer molecular dynamics performed at a single temperature. This advancement has the potential to reduce the evaluation the free energy to a simple modification to any procedure that evaluates the energy and the pair correlation function.


2021 ◽  
Vol 118 (6) ◽  
pp. e2018379118
Author(s):  
Harshad Pathak ◽  
Alexander Späh ◽  
Niloofar Esmaeildoost ◽  
Jonas A. Sellberg ◽  
Kyung Hwan Kim ◽  
...  

Knowledge of the temperature dependence of the isobaric specific heat (Cp) upon deep supercooling can give insights regarding the anomalous properties of water. If a maximum in Cp exists at a specific temperature, as in the isothermal compressibility, it would further validate the liquid–liquid critical point model that can explain the anomalous increase in thermodynamic response functions. The challenge is that the relevant temperature range falls in the region where ice crystallization becomes rapid, which has previously excluded experiments. Here, we have utilized a methodology of ultrafast calorimetry by determining the temperature jump from femtosecond X-ray pulses after heating with an infrared laser pulse and with a sufficiently long time delay between the pulses to allow measurements at constant pressure. Evaporative cooling of ∼15-µm diameter droplets in vacuum enabled us to reach a temperature down to ∼228 K with a small fraction of the droplets remaining unfrozen. We observed a sharp increase in Cp, from 88 J/mol/K at 244 K to about 218 J/mol/K at 229 K where a maximum is seen. The Cp maximum is at a similar temperature as the maxima of the isothermal compressibility and correlation length. From the Cp measurement, we estimated the excess entropy and self-diffusion coefficient of water and these properties decrease rapidly below 235 K.


Sign in / Sign up

Export Citation Format

Share Document