scholarly journals Laboratory Study on Non-Destructive Evaluation of Polyethylene Liquid Storage Tanks by Thermographic and Ultrasonic Methods

CivilEng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 823-851
Author(s):  
Amir Behravan ◽  
Matthew M. deJong ◽  
Alexander S. Brand

High-density polyethylene (HDPE) above-ground storage tanks (AST) are used by highway agencies to store liquid deicing chemicals for the purpose of road maintenance in the winter. A sudden AST failure can cause significant economic and environmental impacts. While ASTs are routinely inspected to identify signs of aging and damage, current methods may not adequately capture all defects, particularly if they are subsurface or too small to be seen during visual inspection. Therefore, to improve the ability to identify potential durability issues with HDPE ASTs, additional non-destructive evaluation (NDE) techniques need to be considered and assessed for applicability. Specifically, this study investigates the efficiency of using infrared thermography (IRT) as a rapid method to simultaneously examine large areas of the tank exterior, which will be followed by closer inspections with conventional and phased array ultrasonic testing (UT) methods. Results show that IRT can help to detect defects that are shallow, specifically located within half of the tank’s wall thickness from the surface. UT has the ability to detect all defects at any depth. Moreover, phased array UT helps to identify stacked defects and characterize each defect more precisely than IRT.

Author(s):  
Yaser A. Jasim ◽  
Senan Thabet ◽  
Thabit H. Thabit

<p><em>A non-destructive test method is the main method to examine most of the materials, composite materials in particular. There are too many </em><em>Non-Destructive Test (</em><em>NDT) methods to inspect the materials such as, Visual Inspection, Liquid Penetrate Inspection, Eddy-Current Inspection, Phased Array Inspection, Magnetic Particle Inspection and Ultrasonic Inspection</em><em>.</em></p><p><em>This paper aims to creat a unified methodology for engineers depending on reaserch onion to study the inspection of the composite materials.</em></p><p><em>The researchers concluded that NDT method is the most suitable method for testing any materials and the composite materials. They also recommended to choose the most suitable NDT method as every materials and composite materials have its own properties as well as the inspection methods had its own capabilities and limitations. </em></p>


Ultrasonics ◽  
2013 ◽  
Vol 53 (6) ◽  
pp. 1065-1078 ◽  
Author(s):  
David Duxbury ◽  
Jonathan Russell ◽  
Michael Lowe

Author(s):  
Paul Laursen ◽  
Daphne D’Zurko ◽  
George Vradis ◽  
Craig Swiech

The present paper presents the development effort and pre-commercial deployment of Explorer II — a semi-autonomous, self-powered, tetherless robotic platform, carrying a Remote Field Eddy Current (RFEC) sensor, for the inspection of unpiggable natural gas transmission and distribution pipelines in the 6 to 8 inch (152 to 203 mm) range, including those that feature multiple diameters, short radius and mitered bends, and tees. The system is based on a modular design that allows the system to be deployed in various configurations to carry out visual inspection and/or non-destructive evaluation (NDE) of a pipeline. The heart of this system is a RFEC sensor able to measure the pipeline’s wall thickness. In addition, two fisheye cameras at each end of the robot provide high quality visual inspection capabilities for locating joints, tee-offs, and other pipeline features. The system can operate, including launching and retrieval, in live pipelines with pressures up to 750 psig (50 bars). The system is currently being offered for pre-commercial deployments and is expected to be commercially available in the Fall of 2010.


Author(s):  
Yingtao Liu ◽  
Joel Johnston ◽  
Aditi Chattopadhyay

Adhesive bonded joints have been increasingly employed in aerospace, automotive, and other mechanical systems due to the advantages of uniform stress distribution, less stress concentration, light in weight, etc. However, the early damage stage of the adhesive bond joints, which are usually named as kissing bond, can significantly impact the structural integrity and safety. Kissing bond is difficult to detect and identify using current non-destructive evaluation (NDE) techniques since there is no clearly gap or interface between the bond area. Attempts using advanced ultrasonic methods have reached limited success, but more reliable methods need to be developed before adhesive joints can be more widely applied to the engineering field. This paper focuses on the development of detection method using digital image correlation (DIC) technique. Three types of adhesive kissing bond joint samples were fabricated using different contamination recipe to simulate the kissing bonds. The performance of the fabricated joint samples were tested using uniaxial hydraulic test frame and the detection capability of DIC system was investigated. The noncontact strain field measurement method using DIC can indicate the existence of kissing bonds with limited load. The results of DIC measurement is encouraging and can be further used for the NDE estimation of mechanical properties of the kissing bond.


2015 ◽  
Vol 45 (1) ◽  
pp. 99-106
Author(s):  
Alexander Popov ◽  
Galina Klitcheva

Abstract The known deterministic relationships to estimate the elastic characteristics of materials are not well accounted for significant variability of these parameters in solids. Therefore, it is given a probabilistic approach to determine the modules of elasticity, adopted to random values, which increases the accuracy of the obtained results. By an ultrasonic testing, a non-destructive evaluation of the investigated steels structure and properties has been made.


Sign in / Sign up

Export Citation Format

Share Document