scholarly journals How to Calculate Condensed Matter Electronic Structure Based on Multi-Electron Atom Semi-Classical Model

2021 ◽  
Vol 6 (4) ◽  
pp. 46
Author(s):  
Levan Chkhartishvili

Atoms are proved to be semi-classical electronic systems in the sense of closeness of their exact quantum electron energy spectrum with that calculated within semi-classical approximation. Introduced semi-classical model of atom represents the wave functions of bounded in atom electrons in form of hydrogen-like atomic orbitals with explicitly defined effective charge numbers. The hydrogen-like electron orbitals of constituting condensed matter atoms are used to calculate the matrix elements of the secular equation determining the condensed matter electronic structure in the linear-combination-of-atomic-orbitals (LCAO) approach. Preliminary test calculations are conducted for boron B atom and diboron B2 molecule electron systems. 

2021 ◽  
Author(s):  
Sunghun Kim ◽  
Joonho Bang ◽  
Chan-young Lim ◽  
Seung Yong Lee ◽  
Jounghoon Hyun ◽  
...  

Abstract Pure quantum electrons render intriguing correlated electronic phases by virtue of quantum fluctuations in addition to an exclusive electron-electron interaction. To realise such quantum electron systems, a key ingredient is dense electrons decoupled from other degrees of freedom. Here, we report the discovery of a pure quantum electron liquid, which spreads up to ~ 3 Å in the vacuum on the surface of electride crystal. An extremely high electron density and its scant hybridization with underneath atomic orbitals evidence quantum and pure nature of electrons, exhibiting polarized liquid phase demonstrated by spin-dependent measurement. Further, upon reducing the density, the dynamics of quantum electrons drastically changes to that of non-Fermi liquid along with an anomalous band deformation, manifesting a possible transition to a hexatic liquid crystalline phase. Our findings cultivate the frontier of quantum electron systems, which serve as an ideal platform for exploring the correlated electronic phases in a pure manner.


1993 ◽  
Vol 329 ◽  
Author(s):  
Vivien D.

AbstractIn this paper the relationships between the crystal structure, chemical composition and electronic structure of laser materials, and their optical properties are discussed. A brief description is given of the different laser activators and of the influence of the matrix on laser characteristics in terms of crystal field strength, symmetry, covalency and phonon frequencies. The last part of the paper lays emphasis on the means to optimize the matrix-activator properties such as control of the oxidation state and site occupancy of the activator and influence of its concentration.


2016 ◽  
Vol 94 (3) ◽  
Author(s):  
María Florencia Ludovico ◽  
Michael Moskalets ◽  
David Sánchez ◽  
Liliana Arrachea

1985 ◽  
Vol 32 (12) ◽  
pp. 8377-8380 ◽  
Author(s):  
Y. P. Li ◽  
Zong-Quan Gu ◽  
W. Y. Ching

Sign in / Sign up

Export Citation Format

Share Document